Deep-TROJ: An Inference Stage Trojan Insertion Algorithm through Efficient Weight Replacement Attack

Sabbir Ahmed

Binghamton University

June 4, 2024

STATE UNIVERSITY OF NEW YORK

Background

Background

Introduction

- Recent advancements in deep learning technologies have revolutionized a wide range of applications and accelerated the integration of these technologies into our lives.
- Deep Neural Networks (DNNs) have found widespread applications, including:
 - Image classification
 - Object detection
 - Speech recognition

Background

Potential Security Challenges

- AI applications need strict safety standards for public well-being
- However, recent attack methodologies can compromise and manipulate DNN performance

Attacker wants the deployed model to generate wrong predictions

- AI applications need strict safety standards for public well-being
- However, recent attack methodologies can compromise and manipulate DNN performance

- Attacker wants the deployed model to generate wrong predictions
- Potential Security Threat:

- AI applications need strict safety standards for public well-being
- However, recent attack methodologies can compromise and manipulate DNN performance

- Attacker wants the deployed model to generate wrong predictions
- Potential Security Threat:
 - Adversarial Input Attack

- AI applications need strict safety standards for public well-being
- However, recent attack methodologies can compromise and manipulate DNN performance

- Attacker wants the deployed model to generate wrong predictions
- Potential Security Threat:
 - Adversarial Input Attack
 - Adversarial Weight Attack

- AI applications need strict safety standards for public well-being
- However, recent attack methodologies can compromise and manipulate DNN performance

- Attacker wants the deployed model to generate wrong predictions
- Potential Security Threat:
 - Adversarial Input Attack
 - Adversarial Weight Attack
 - Backdoor/Trojan Attack

Trojan Attack

Figure 1: Overview of Targeted Trojan Attack

• The key Idea is to **insert hidden behavior into a DNN**

Figure 1: Overview of Targeted Trojan Attack

- The key Idea is to **insert hidden behavior into a DNN**
- Such malicious behavior can only be activated through attacker designed trigger embedded into the image

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \ \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \ \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

Here, \mathbf{x} , \mathbf{y} , $\hat{\mathbf{x}}$, and \mathbf{y}_t represent the batch of clean inputs, original labels, triggered inputs, and the target class for the attack, respectively.

• Training-stage trojan attacks

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \ \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker poisons subset of training data

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \ \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker **poisons** subset of training data
 - Injects malicious behaviour while training the model

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker **poisons** subset of training data
 - Injects malicious behaviour while training the model
 - Assumes attacker access to training facilities, which is less practical

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker **poisons** subset of training data
 - Injects malicious behaviour while training the model
 - Assumes attacker access to training facilities, which is less practical
- Inference stage Trojan attacks

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker **poisons** subset of training data
 - Injects malicious behaviour while training the model
 - Assumes attacker access to training facilities, which is less practical
- Inference stage Trojan attacks
 - Utilizes memory fault injection techniques, such as Rowhammer, to flip memory bits and alter model weights during inference

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker **poisons** subset of training data
 - Injects malicious behaviour while training the model
 - Assumes attacker access to training facilities, which is less practical
- Inference stage Trojan attacks
 - Utilizes memory fault injection techniques, such as Rowhammer, to flip memory bits and alter model weights during inference
 - Performs gradient-based ranking of neurons to inject bit-flips into targeted weights

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker poisons subset of training data
 - Injects malicious behaviour while training the model
 - Assumes attacker access to training facilities, which is less practical
- Inference stage Trojan attacks
 - Utilizes memory fault injection techniques, such as Rowhammer, to flip memory bits and alter model weights during inference
 - Performs gradient-based ranking of neurons to inject bit-flips into targeted weights
 - Does not need access to training facilities

Trojan Attack Objective

$$\min_{\hat{\mathcal{W}}} \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\mathcal{L}(\mathbf{F}(\mathbf{x}), \mathbf{y}) \right] + \mathbb{E}_{\hat{\mathbf{x}} \sim \hat{\mathcal{X}}} \left[\mathcal{L}(\mathbf{F}(\hat{\mathbf{x}}), \mathbf{y}_t) \right]$$

- Training-stage trojan attacks
 - Attacker poisons subset of training data
 - Injects malicious behaviour while training the model
 - Assumes attacker access to training facilities, which is less practical
- Inference stage Trojan attacks
 - Utilizes memory fault injection techniques, such as Rowhammer, to flip memory bits and alter model weights during inference
 - Performs gradient-based ranking of neurons to inject bit-flips into targeted weights
 - Does not need access to training facilities
 - However, existing works focuses on **corrupting the last classification layer** which is easier to detect/remove

• We adopt the same practical threat model as existing inference stage Trojan attacks leveraging memory faults at inference

- We adopt the same practical threat model as existing inference stage Trojan attacks leveraging memory faults at inference
- Unlike existing methods that perform bit-flip in individual weight bits, our algorithm performs **bit-flip in memory addresses**

- We adopt the same practical threat model as existing inference stage Trojan attacks leveraging memory faults at inference
- Unlike existing methods that perform bit-flip in individual weight bits, our algorithm performs **bit-flip in memory addresses**
- Bit-flip in the page table allows the attacker to overwrite a specific data block at a target address with a replacement block from a different address

- We adopt the same practical threat model as existing inference stage Trojan attacks leveraging memory faults at inference
- Unlike existing methods that perform bit-flip in individual weight bits, our algorithm performs **bit-flip in memory addresses**
- Bit-flip in the page table allows the attacker to overwrite a specific data block at a target address with a replacement block from a different address
- This way, utilizing bit-flip in page frame number, an attacker will precisely replace any target weight block W1 with a new replacement weight block W2

• Consider the virtual memory address set: $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$

- Consider the virtual memory address set: $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$
- Address a_i points to a physical address containing weight block \mathbf{w}_i

- Consider the virtual memory address set: $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$
- Address a_i points to a physical address containing weight block \mathbf{w}_i
- Corresponding set of weight blocks: $W = {w_1, w_2, \dots, w_N}$

- Consider the virtual memory address set: $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$
- Address a_i points to a physical address containing weight block \mathbf{w}_i
- Corresponding set of weight blocks: $W = {w_1, w_2, \dots, w_N}$
- Collectively, *W* holds the weights of the DNN model

- Consider the virtual memory address set: $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$
- Address a_i points to a physical address containing weight block \mathbf{w}_i
- Corresponding set of weight blocks: $W = {w_1, w_2, \dots, w_N}$
- Collectively, *W* holds the weights of the DNN model
- Flipping bits to change a_i to a_j replaces *target weight block* \mathbf{w}_i with *replacement weight block* \mathbf{w}_j

- Consider the virtual memory address set: $\mathcal{A} = \{a_1, a_2, \dots, a_N\}$
- Address a_i points to a physical address containing weight block \mathbf{w}_i
- Corresponding set of weight blocks: $W = {w_1, w_2, \dots, w_N}$
- Collectively, \mathcal{W} holds the weights of the DNN model
- Flipping bits to change a_i to a_j replaces *target weight block* \mathbf{w}_i with *replacement weight block* \mathbf{w}_j
- The goal is to achieve Trojan attack objective through address bit flips

Proposed Deep-TROJ attack algorithm

Proposed Deep-TROJ attack algorithm

• There are three key challenges

• There are three key challenges

Challenges

• There are three key challenges

Challenges

• First, we want to locate a set of vulnerable weight blocks to be attacked, which we define as the **target weight blocks**

• There are three key challenges

Challenges

- First, we want to locate a set of vulnerable weight blocks to be attacked, which we define as the **target weight blocks**
- Second, we aim to identify corresponding optimal replacement weight blocks, which we label as the **replacement weight blocks**

• There are three key challenges

Challenges

- First, we want to locate a set of vulnerable weight blocks to be attacked, which we define as the **target weight blocks**
- Second, we aim to identify corresponding optimal replacement weight blocks, which we label as the **replacement weight blocks**
- Third, we want to **find an optimal trigger** to maximize the attack objective given a target and replacement block set

Gradient-Based Target Block Identification

First, we identify the target weight blocks that are most vulnerable for Trojan insertion by ranking them according to their impact on Trojan attack loss \mathcal{L}_{trojan} defined as:

To measure the impact, we use the gradient of the \mathcal{L}_{trojan} loss function w.r.t. each weight block:

Gradient-Based Target Block Identification

We perform n forward and backward passes to sum the gradients over n iterations. The sum of the gradients for the *i*-th weight block is:

To rank the impact of individual weight blocks, we define a rank metric as the l_2 -norm of the summed gradient vector:

We Select the top-*k* weight blocks based on their rank as the target weight blocks:

Target Weight Blocks

 $\mathcal{W}_t = \{\mathbf{w}_i \mid \mathbf{w}_i \in \mathcal{W} \text{ and } \operatorname{rank}(\mathbf{w}_i) \in \operatorname{top-}k(\operatorname{ranks})\}$

• After determining target weight blocks W_t , the goal is to modify each $\mathbf{w}_t \in W_t$ to achieve the attack objective, ensuring $\hat{W}_t \subset W$.

- After determining target weight blocks W_t , the goal is to modify each $\mathbf{w}_t \in W_t$ to achieve the attack objective, ensuring $\hat{W}_t \subset W$.
- To ensure that the updated weight blocks \hat{W}_t stay within the feasible set W, we add a constraint in our optimization process:

- After determining target weight blocks W_t , the goal is to modify each $\mathbf{w}_t \in W_t$ to achieve the attack objective, ensuring $\hat{W}_t \subset W$.
- To ensure that the updated weight blocks \hat{W}_t stay within the feasible set W, we add a constraint in our optimization process:

- After determining target weight blocks W_t , the goal is to modify each $\mathbf{w}_t \in W_t$ to achieve the attack objective, ensuring $\hat{W}_t \subset W$.
- To ensure that the updated weight blocks \hat{W}_t stay within the feasible set W, we add a constraint in our optimization process:

Constraint Loss
$$\mathcal{L}_{\text{constraint}} = \frac{1}{k} \sum_{\hat{\mathbf{w}}_t \in \hat{\mathcal{W}}_t} \left\| 1 - \max_{\mathbf{w}_i \in \mathcal{W}} \frac{\hat{\mathbf{w}}_t^T \mathbf{w}_i}{||\hat{\mathbf{w}}_t||_2 ||\mathbf{w}_i||_2} \right\|_1$$

Even after incorporating the constraint, there's no guarantee that the updated weight blocks \hat{W}_t will belong to the set of allowable weight blocks \hat{W} . To resolve this, we do the following to find replacement weight blocks:

- After determining target weight blocks W_t , the goal is to modify each $\mathbf{w}_t \in W_t$ to achieve the attack objective, ensuring $\hat{W}_t \subset W$.
- To ensure that the updated weight blocks \hat{W}_t stay within the feasible set W, we add a constraint in our optimization process:

Constraint Loss
$$\mathcal{L}_{\text{constraint}} = \frac{1}{k} \sum_{\hat{\mathbf{w}}_t \in \hat{\mathcal{W}}_t} \left\| 1 - \max_{\mathbf{w}_i \in \mathcal{W}} \frac{\hat{\mathbf{w}}_t^T \mathbf{w}_i}{||\hat{\mathbf{w}}_t||_2 ||\mathbf{w}_i||_2} \right\|_1$$

Even after incorporating the constraint, there's no guarantee that the updated weight blocks \hat{W}_t will belong to the set of allowable weight blocks W. To resolve this, we do the following to find replacement weight blocks:

Replacement Weight Block
$$\mathbf{w}_r = \operatorname*{argmax}_{\mathbf{w}_i \in \mathcal{W}, \mathbf{w}_i \neq \mathbf{w}_t} \hat{\mathbf{w}}_t^T \mathbf{w}_i$$

where \mathbf{w}_r is the most similar block to $\hat{\mathbf{w}}_t$.

Trigger Optimization

To jointly optimize the trigger Δ and weight blocks, ensuring Δ stays within the feasible input range, we minimize:

Trigger Loss $\mathcal{L}_{\text{trigger}} = \frac{1}{C} \sum_{i=1}^{C} \left(||\Delta_{\min}^{i} - \mathbf{x}_{\min}^{i}||_{2}^{2} + ||\Delta_{\max}^{i} - \mathbf{x}_{\max}^{i}||_{2}^{2} \right)$

The overall loss function is:

Overall Loss

$$\mathcal{L}_{\text{Deep-TROJ}} = \mathcal{L}_{\text{trojan}} + \alpha \cdot \mathcal{L}_{\text{constraint}} + \beta \cdot \mathcal{L}_{\text{trigger}}$$

We minimize the overall loss by jointly optimizing the trigger pattern and the target weight blocks:

Post-optimization, we determine replacement blocks and their addresses, and use the optimized trigger pattern for the attack.

Results

Results

• ACC: Model's performance on clean/benign data.

- ACC: Model's performance on clean/benign data.
- ASR: Effectiveness of the backdoor attack.

- ACC: Model's performance on clean/benign data.
- ASR: Effectiveness of the backdoor attack.

Model	Before	Attack (%)	After Attack (%)		
Wiouci	ACC	ASR	ACC	ASR	
VGG-11	69.01	0.10	69.00	99.98	
VGG-13	69.84	0.09	69.21	99.99	
VGG-16	71.60	0.09	71.57	99.98	
ResNet-50	75.84	0.09	75.85	99.92	
ResNet-101	77.22	0.10	77.22	99.91	
ResNet-152	78.27	0.10	78.21	99.89	
MobileNetV2	71.16	0.10	70.75	99.52	
DenseNet121	74.25	0.09	74.19	99.99	
VIT	79.65	0.10	79.64	100.00	

- ACC: Model's performance on clean/benign data.
- ASR: Effectiveness of the backdoor attack.

Model	Before	Attack (%)	After A	ttack (%)
woder	ACC	ASR	ACC	ASR
VGG-11	69.01	0.10	69.00	99.98
VGG-13	69.84	0.09	69.21	99.99
VGG-16	71.60	0.09	71.57	99.98
ResNet-50	75.84	0.09	75.85	99.92
ResNet-101	77.22	0.10	77.22	99.91
ResNet-152	78.27	0.10	78.21	99.89
MobileNetV2	71.16	0.10	70.75	99.52
DenseNet121	74.25	0.09	74.19	99.99
VIT	79.65	0.10	79.64	100.00

Attack	ACC (%)	ASR (%)	Iterations
TBT [30]	89.38	93.41	413
ProFlip [6]	90.30	97.90	12
Deep-TROJ (Ours)	92.49	99.63	5

- ACC: Model's performance on clean/benign data.
- ASR: Effectiveness of the backdoor attack.

Model	Before	Attack (%)	After Attack (%)		
woder	ACC	ASR	ACC	ASR	
VGG-11	69.01	0.10	69.00	99.98	
VGG-13	69.84	0.09	69.21	99.99	
VGG-16	71.60	0.09	71.57	99.98	
ResNet-50	75.84	0.09	75.85	99.92	
ResNet-101	77.22	0.10	77.22	99.91	
ResNet-152	78.27	0.10	78.21	99.89	
MobileNetV2	71.16	0.10	70.75	99.52	
DenseNet121	74.25	0.09	74.19	99.99	
VIT	79.65	0.10	79.64	100.00	

Attack	ACC (%)	ASR (%)	Iterations		Attack	ACC (%)	ASR (%)	Iterations
TBT [30]	89.38	93.41	413	1	TBT [30]	68.96	94.69	1650
ProFlip [6]	90.30	97.90	12		Proflip [6]	70.54	95.87	1380
Deen-TROI (Ours)	07 10	00 63	5		TrojViT [46]	79.19	99.96	880
Deep-TROJ (Ours)	12.41	77.05	5		Deep-TROJ (Ours)	79.64	100.00	5

- ACC: Model's performance on clean/benign data.
- ASR: Effectiveness of the backdoor attack.

Model	Before	Attack (%)	After Attack (%)	
wouer	ACC	ASR	ACC	ASR
VGG-11	69.01	0.10	69.00	99.98
VGG-13	69.84	0.09	69.21	99.99
VGG-16	71.60	0.09	71.57	99.98
ResNet-50	75.84	0.09	75.85	99.92
ResNet-101	77.22	0.10	77.22	99.91
ResNet-152	78.27	0.10	78.21	99.89
MobileNetV2	71.16	0.10	70.75	99.52
DenseNet121	74.25	0.09	74.19	99.99
VIT	79.65	0.10	79.64	100.00

Attack	ACC (%)	ASR (%)	Iterations	Attack	ACC (%)	ASR (%)	Iteration
TBT [30]	89.38	93.41	413	TBT [30]	68.96	94.69	1650
ProFlip [6]	90.30	97.90	12	Proflip [6]	70.54	95.87	1380
Deep-TROJ (Ours)	92.49	99.63	5	Troj ViT [46] Deen-TROI (Ours)	79.19	99.96 100.00	880

Proposed Deep-TROJ successfully attacks various DNNs with high attack efficacy

- ACC: Model's performance on clean/benign data.
- ASR: Effectiveness of the backdoor attack.

Model	Before	Attack (%)	After Attack (%)	
woder	ACC	ASR	ACC	ASR
VGG-11	69.01	0.10	69.00	99.98
VGG-13	69.84	0.09	69.21	99.99
VGG-16	71.60	0.09	71.57	99.98
ResNet-50	75.84	0.09	75.85	99.92
ResNet-101	77.22	0.10	77.22	99.91
ResNet-152	78.27	0.10	78.21	99.89
MobileNetV2	71.16	0.10	70.75	99.52
DenseNet121	74.25	0.09	74.19	99.99
VIT	79.65	0.10	79.64	100.00

ASR (%)

94.69 95.87

99.96

Iterations 1650

> 1380 880

> > 5

Attack	ACC (%)	ASR (%)	Iterations	Attack	ACC
TBT [30]	89.38	93.41	413	TBT [30]	68.
ProFlip [6]	90.30	97.90	12	Proflip [6]	70.
Deep-TROJ (Ours)	92.49	99.63	5	Deep-TROJ (Ours)	79. 79.

- Proposed Deep-TROJ successfully attacks various DNNs with high attack efficacy
- Proposed Deep-TROJ outperforms SOTA inference-stage trojan attacks on attacking both CNN and Vision Transformer (ViT)

Methods	ACC	ASR
SSDA [3]	N/A	N/A
SPECTRE [15]	N/A	N/A
NAD [24]	N/A	N/A
CLP [47]	30.08	4.62

Methods	ACC	ASR
SSDA [3]	N/A	N/A
SPECTRE [15]	N/A	N/A
NAD [24]	N/A	N/A
CLP [47]	30.08	4.62

• Training-stage based defenses do not apply

Methods	ACC	ASR
SSDA [3]	N/A	N/A
SPECTRE [15]	N/A	N/A
NAD [24]	N/A	N/A
CLP [47]	30.08	4.62

- Training-stage based defenses do not apply
- Detection based defenses incur high runtime overhead

Methods	ACC	ASR
SSDA [3]	N/A	N/A
SPECTRE [15]	N/A	N/A
NAD [24]	N/A	N/A
CLP [47]	30.08	4.62

- Training-stage based defenses **do not apply**
- Detection based defenses incur high runtime overhead
- Even detection based defense such as CLP is **ineffective**

- Training-stage based defenses do not apply
- Detection based defenses incur high runtime overhead
- Even detection based defense such as CLP is ineffective

- Training-stage based defenses do not apply
- Detection based defenses incur high runtime overhead
- Even detection based defense such as CLP is **ineffective**
- Target weight blocks are distributed across model layers

- Training-stage based defenses do not apply
- Detection based defenses incur high runtime overhead
- Even detection based defense such as CLP is **ineffective**
- Target weight blocks are distributed across model layers
- Makes this attack even harder to detect or defend

Summary

Summary

In summary

• We proposed a **new inference stage Trojan attack** that addresses the limitations of traditional training and recent inference stage trojan attacks

- We proposed a **new inference stage Trojan attack** that addresses the limitations of traditional training and recent inference stage trojan attacks
- We **developed three novel strategies** to find the minimum set of target weight blocks, replacement weight blocks and the optimal trigger to carry out the attack

- We proposed a **new inference stage Trojan attack** that addresses the limitations of traditional training and recent inference stage trojan attacks
- We **developed three novel strategies** to find the minimum set of target weight blocks, replacement weight blocks and the optimal trigger to carry out the attack
- We have thoroughly validated Deep-TROJ across various DNN architectures, including Vision Transformer

- We proposed a **new inference stage Trojan attack** that addresses the limitations of traditional training and recent inference stage trojan attacks
- We **developed three novel strategies** to find the minimum set of target weight blocks, replacement weight blocks and the optimal trigger to carry out the attack
- We have thoroughly validated Deep-TROJ across various DNN architectures, including Vision Transformer
- In addition, proposed attack successfully **bypasses existing trojan defense** strategies

- We proposed a **new inference stage Trojan attack** that addresses the limitations of traditional training and recent inference stage trojan attacks
- We **developed three novel strategies** to find the minimum set of target weight blocks, replacement weight blocks and the optimal trigger to carry out the attack
- We have thoroughly validated Deep-TROJ across various DNN architectures, including Vision Transformer
- In addition, proposed attack successfully **bypasses existing trojan defense** strategies
- Thus, to make AI safer and more secure, the community must address the security threat posed by this attack by investigating appropriate remedies

Acknowledgement

Thank you!