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Background

Introduction

Recent advancements in deep learning technologies have
revolutionized a wide range of applications and accelerated the
integration of these technologies into our lives.

Deep Neural Networks (DNNs) have found widespread applications,
including:

Image classification
Object detection
Speech recognition
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Potential Security Challenges

AI applications need strict safety standards for public well-being

However, recent attack methodologies can compromise and manipulate
DNN performance

Attacker wants the deployed model to generate wrong predictions

Potential Security Threat:

Adversarial Input Attack
Adversarial Weight Attack
Backdoor/Trojan Attack
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Trojan Attack Objective

min
Ŵ

Ex∼X [L(F(x),y)] + Ex̂∼X̂ [L(F(x̂),yt)]

Here, x, y, x̂, and yt represent the batch of clean inputs, original labels,
triggered inputs, and the target class for the attack, respectively.

Training-stage trojan attacks

Attacker poisons subset of training data
Injects malicious behaviour while training the model
Assumes attacker access to training facilities, which is less practical

Inference stage Trojan attacks

Utilizes memory fault injection techniques, such as Rowhammer, to flip
memory bits and alter model weights during inference
Performs gradient-based ranking of neurons to inject bit-flips into targeted
weights
Does not need access to training facilities
However, existing works focuses on corrupting the last classification layer
which is easier to detect/remove
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Ŵ

Ex∼X [L(F(x),y)] + Ex̂∼X̂ [L(F(x̂),yt)]

Here, x, y, x̂, and yt represent the batch of clean inputs, original labels,
triggered inputs, and the target class for the attack, respectively.

Training-stage trojan attacks
Attacker poisons subset of training data
Injects malicious behaviour while training the model
Assumes attacker access to training facilities, which is less practical

Inference stage Trojan attacks
Utilizes memory fault injection techniques, such as Rowhammer, to flip
memory bits and alter model weights during inference

Performs gradient-based ranking of neurons to inject bit-flips into targeted
weights
Does not need access to training facilities
However, existing works focuses on corrupting the last classification layer
which is easier to detect/remove



Trojan Attack

Trojan Attack

Trojan Attack Objective

min
Ŵ
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Page Table (A2)

Bit-Flip

Attacker's 1st Virtual Address

Target Row (W1)
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Attacker's 2nd Virtual Address Replacement Row (W2)
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Rowhammer

We adopt the same practical threat model as existing inference stage
Trojan attacks leveraging memory faults at inference

Unlike existing methods that perform bit-flip in individual weight bits,
our algorithm performs bit-flip in memory addresses
Bit-flip in the page table allows the attacker to overwrite a specific data
block at a target address with a replacement block from a different
address
This way, utilizing bit-flip in page frame number, an attacker will
precisely replace any target weight block W1 with a new replacement
weight block W2
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Deep-TROJ Attack
 at Inference

Input

Triggered Input

Input

Dog
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a4
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Consider the virtual memory address set: A = {a1, a2, . . . , aN}
Address ai points to a physical address containing weight block wi

Corresponding set of weight blocks: W = {w1,w2, . . . ,wN}
Collectively, W holds the weights of the DNN model

Flipping bits to change ai to aj replaces target weight block wi with
replacement weight block wj

The goal is to achieve Trojan attack objective through address bit flips
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What are the key challenges?

There are three key challenges

Challenges

First, we want to locate a set of vulnerable weight blocks to be
attacked, which we define as the target weight blocks

Second, we aim to identify corresponding optimal replacement
weight blocks, which we label as the replacement weight blocks

Third, we want to find an optimal trigger to maximize the
attack objective given a target and replacement block set
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Gradient-Based Target Block Identification

First, we identify the target weight blocks that are most vulnerable for Trojan
insertion by ranking them according to their impact on Trojan attack loss
Ltrojan defined as:

Trojan Attack Loss

Ltrojan(x,y, x̂,yt) = LCE(F(x),y) + LCE(F(x̂),yt)

To measure the impact, we use the gradient of the Ltrojan loss function w.r.t.
each weight block:

Gradient of Loss

∇wiLtrojan =
[
∂Ltrojan

∂wi1
. . .

∂Ltrojan

∂wi128

]T



Proposed Deep-TROJ attack algorithm

Gradient-Based Target Block Identification

We perform n forward and backward passes to sum the gradients over n
iterations. The sum of the gradients for the i-th weight block is:

Sum of Gradients

gi =

n∑
j=1

∇wiLtrojan(xj ,yj , x̂j ,yt)

To rank the impact of individual weight blocks, we define a rank metric as
the l2-norm of the summed gradient vector:

Rank Metric

rank(wi) = ∥gi∥2

We Select the top-k weight blocks based on their rank as the target weight
blocks:

Target Weight Blocks

Wt = {wi | wi ∈ W and rank(wi) ∈ top-k(ranks)}

where k is a hyperparameter representing the attacker’s budget for the
number of weight address changes.



Proposed Deep-TROJ attack algorithm

Optimal Replacement Block Search

After determining target weight blocks Wt, the goal is to modify each
wt ∈ Wt to achieve the attack objective, ensuring Ŵt ⊂ W .

To ensure that the updated weight blocks Ŵt stay within the feasible set
W , we add a constraint in our optimization process:

Constraint Loss

Lconstraint =
1

k

∑
ŵt∈Ŵt

∣∣∣∣∣∣∣∣1− max
wi∈W

ŵT
t wi

||ŵt||2||wi||2

∣∣∣∣∣∣∣∣
1

Even after incorporating the constraint, there’s no guarantee that the
updated weight blocks Ŵt will belong to the set of allowable weight blocks
W . To resolve this, we do the following to find replacement weight blocks:

Replacement Weight Block

wr = argmax
wi∈W,wi ̸=wt

ŵT
t wi

where wr is the most similar block to ŵt.
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To ensure that the updated weight blocks Ŵt stay within the feasible set
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||ŵt||2||wi||2

∣∣∣∣∣∣∣∣
1

Even after incorporating the constraint, there’s no guarantee that the
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Proposed Deep-TROJ attack algorithm

Trigger Optimization

To jointly optimize the trigger ∆ and weight blocks, ensuring ∆ stays within
the feasible input range, we minimize:

Trigger Loss

Ltrigger =
1

C

C∑
i=1

(
||∆i

min − xi
min||22 + ||∆i

max − xi
max||22

)
The overall loss function is:

Overall Loss

LDeep-TROJ = Ltrojan + α · Lconstraint + β · Ltrigger

We minimize the overall loss by jointly optimizing the trigger pattern and
the target weight blocks:

Optimization Objective

min
Ŵt,∆

LDeep-TROJ

Post-optimization, we determine replacement blocks and their addresses,
and use the optimized trigger pattern for the attack.
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ACC: Model’s performance on clean/benign data.

ASR: Effectiveness of the backdoor attack.

Proposed Deep-TROJ successfully attacks various DNNs with high
attack efficacy

Proposed Deep-TROJ outperforms SOTA inference-stage trojan attacks
on attacking both CNN and Vision Transformer (ViT)
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