

Introduction and Overview

Problem [1, 2]:

- 3D reconstruction of dynamic cloth motion
- Monocular RGBA video sequence
- Known template mesh and camera parameters Goal:
- Realistic sequence of deforming meshes
- High quality and fast computation

Network Training

- Regular 32 x 32 square grid mesh
- Normalize length, time, and mass of the cloth
- Start in flat rest state with random parameters
- Fill training pool with learned results

Physics-guided Shape-from-Template Monocular Video Perception through Neural Surrogate Models

David Stotko, Nils Wandel, Reinhard Klein

Physics-informed Loss

Stretching E_Y

Bending E_B

Shearing E_S

≁ext =

 Energy-based loss function [3] $\mathcal{L}_{\text{cloth}} = E_Y + E_B + E_S + \mathcal{L}_{\text{ext}} + \mathcal{L}_{\text{inertia}}$

Pipeline

Qualitative Results

- Smooth and stable reconstruction
- Realistic motion due to a physical simulation

Quantitative Results

- Quality comparable to state-of-the-art
- Symmetric Chamfer distance [x10⁻⁴]:

Method	R3	R4	R5	R7	R 8	R 9
ϕ -SfT [2]	7.9	10.3	14.4	9.1	3.7	2.9
Ours	12.5	14.5	11.7	6.9	10.1	8.6
Ratio	1.59	1.41	0.81	0.76	2.70	2.94

- 400 500 times faster optimization
- Runtime in minutes:

Method	R3	R4	R5	R7	R 8	R9
ϕ -SfT [2]	1204	1453	1152	1035	1186	1157
Ours	3.07	2.48	3.03	2.58	2.55	2.47

Acknowledgements and References

This work has been funded by the DFG project KL 1142/11-2 (DFG Research Unit FOR 2535 Anticipating Human Behavior), by the Federal Ministry of Education and Research of Germany and the state of North-Rhine Westphalia as part of the Lamarr-Institute for Machine Learning and Artificial Intelligence and the InVirtuo 4.0 project, and additionally by the Federal Ministry of Education and Research under grant no. 01IS22094E WEST-AI.

- [1] Adrien Bartoli, Yan Gérard, François Chadebecq, TobyCollins, and Daniel Pizarro. Shape-from-template. IEEE TPAMI, 37(10):2099–2118, 2015.
- [2] Navami Kairanda, Edith Tretschk, Mohamed Elgharib, Christian Theobalt, and Vladislav Golyanik. **\$\$ OLY Str: Shape-from-Template with a Physics-Based Deformation Model**. In CVPR, pages 3948–3958, 2022.
- [3] Igor Santesteban, Miguel A. Otaduy, and Dan Casas. Snug: Self-supervised neural dynamic garments. In CVPR, pages 8140–8150, 2022.