Circuit Design and Efficient Simulation of Quantum Inner Product and Empirical Studies of Its Effect on Near-Term Hybrid Quantum-Classic Machine Learning

Hao Xiong*, YehuiTang*, Xinyu Ye*, Junchi Yan+ {taxuexh, yehuitang, xinyu ye, yanjunchi}@sjtu.edu.cn, Shanghai Jiao Tong University, *equal contribution, +corresponding authors

project page: https://github.com/ShawXh/qip cvpr24

Introduction

Inner product compution

Applications: vector inner product, linear mapping, matrix multiplication, etc.

a) Classical computing

Ouantum inner product compution

b) Quantum computing

Quantum machine computes inner products by measuring the output quantum states of a designed quantum circuits

c) Hybrid guantum-classical computing

Classical machines upload vectors to the quantum machine, which computes inner products and return results to classical machines.

Contributions of the paper:

- · Circuit Design of QIP on Quantum Computers.
- Efficient Simulation of QIP on Classic Computers.
- Evaluating QIP in ML on Classic Computers.

a) Quantum circuits for QIP

Theorem 1 (1-to-1 QIP Circuit (for vector inner product)). There exists a quantum circuit $U(\mathbf{x}, \mathbf{y})$ computing the inner product of two normalized vector $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ with complexity $O(\frac{\log d}{\epsilon})$ where ϵ is a given precision parameter.

Figure 8. Quantum circuit of the 1-to-1 quantum inner product estimation. (For details please refer to the paper) Theorem 2 for 1-to-N QIP Circuit (for linear mapping) and Theorem 3 for M-to-N QIP Circuit (for matrix multiplication.

Time complexity of the QIP circuit: $O(\epsilon^{-1}\log MN\log d)$ Time complexity of classical computation: O(MNd)

-		(/
Mode	Number of required qubits	Use case	
1-to-1	$1 + t + \lceil \log d \rceil$	vector inner	product
1-to-N	$1 + Nt + \lceil \log N \rceil + \lceil \log d \rceil$	linear mapp	ing
M-to- N	$1 + MNt + \lceil \log N \rceil + \lceil \log M \rceil + \lceil \log d \rceil$	matrix mult	iplication

2 Quantum Circuit Design

4 Selected Experiments

Experiment 1: ProjUNN with QIP, on MNIST

Experiment 2: Accuracy and efficiency comparison of the circuit simulator implemented in giskit and our state simulator

	Simulator	$MSE\downarrow$	$MAE\downarrow$	Running Time (s) \downarrow
d = 4	Circuit (qiskit)	4.31e-4	1.63e-2	7.072
	State (ours)	numerically the same		0.036, 196x faster
d = 16	Circuit (qiskit)	7.64e-4	2.32e-2	114.502
	State (ours)	numerically the same		0.037, 3095x faster
d = 64	Circuit (qiskit)	9.05e-4	2.53e-2	2388.785
	State (ours)	numerically the same		0.035, 68251x faster

Notes: Other experiments, including K-Means. node2vec, results on real quantum machine, etc., please refer to the paper

93.70

92.96 94 65

95.37

95.54

96.13

95.97

Conclusion: The calculation error brought by typical quantum mechanisms would incur in general little influence on the final numerical results given sufficient qubits. However, certain tasks e.g. ranking in K-Means could be more sensitive to quantum noise.