

LAN: Learning to Adapt Noise for Image Denoising

> Changjin Kim, Tae Hyun Kim, Sungyong Baik Hanyang University, Republic of Korea

Image Denoising

Image Denoising

Motivation

Image translation

Noise translation?

- Traditional image denoising often fails with unseen noise distributions.
- Can input noise be translated to the noise seen during training?

Overview

- To handle unseen noise, we propose Learning to Adapt Noise (LAN).
- LAN focuses on adapting input noise itself rather than the network.
 - Adapts input noise by adding a learnable noise offset, aligning it with the noise seen during training.

• **Pretraining:** The denoising network is pretrained on noisy-clean image pairs using L2 loss.

 $oldsymbol{y}^s = oldsymbol{x}^s + oldsymbol{e}^s, \quad ext{where} \quad oldsymbol{e}^s \sim \mathcal{D}^s$ $oldsymbol{ heta}^* = rgmin_{oldsymbol{ heta}} \quad \mathbb{E}\left[\left\| f_{oldsymbol{ heta}}(oldsymbol{y}^s) - oldsymbol{x}^s
ight\|_2^2
ight]$

• Fine-tuning: The pretrained network is fine-tuned on noisy image using self-supervised loss.

 $oldsymbol{y}^u = oldsymbol{x}^u + oldsymbol{e}^u, ext{ where } oldsymbol{e}^u \sim \mathcal{D}^u$ $oldsymbol{\mathcal{L}}$ $\mathcal{L}_{ ext{self}} = ig\|f_{oldsymbol{ heta}}(D_1(oldsymbol{y}^u)) - D_2(oldsymbol{y}^u)ig\|_2^2$

- LAN (Ours): LAN adapts input noise using learnable offsets, aligning with pretrained noise distributions for better denoising.
 - Seen ightarrow Unseen $e^u=e^s+\epsilon^{s
 ightarrow u}$ $y^u=x^u+e^s+\epsilon^{s
 ightarrow u}$ $y^{u
 ightarrow s}\coloneqq x^u+e^s=y^u-\epsilon^{s
 ightarrow u}$
 - · Learning to adapt noise

 $egin{aligned} egin{aligned} egi$

 $\hat{\boldsymbol{x}}^u = f_{\boldsymbol{\theta}^*}(\boldsymbol{y}^u + \boldsymbol{\phi}^*)$

Experiments: Quantitative results

Model	Method	Iter.	$SIDD \rightarrow PolyU$		SIDD -	$\mathrm{SIDD} ightarrow \mathrm{Nam}$		Method	Iter.	$SIDD \rightarrow PolyU$		SIDD	$\mathrm{SIDD} ightarrow \mathrm{Nam}$	
			$PSNR^{\uparrow} (dB) / SSIM^{\uparrow}$		$PSNR^{\uparrow}$ (d)					$PSNR^{\uparrow} (dB) / SSIM^{\uparrow}$		$PSNR^{\uparrow}$ (d	$PSNR^{\uparrow} (dB) / SSIM^{\uparrow}$	
			ZS-N2N	Nbr2Nbr	ZS-N2N	Nbr2Nbr				ZS-N2N	Nbr2Nbr	ZS-N2N	Nbr2Nbr	
	pretrained	-	38.10 / 0.952		36.60	36.60 / 0.930		pretrained	-	38.93	/ 0.965	37.55 /	/ 0.950	
DnCNN		5	38.07 / 0.951	$38.08 \ / \ 0.951$	$36.60 \ / \ 0.929$	36.60 / 0.929			5	$39.01 \ / \ 0.964$	$38.96 \ / \ 0.964$	37.80 / 0.950	$37.72 \ / \ 0.948$	
	full-trainable	10	$38.04 \ / \ 0.950$	$38.06 \ / \ 0.951$	$36.59 \ / \ 0.928$	$36.60 \ / \ 0.928$		full-trainable	10	$39.01 \ / \ 0.963$	$38.92 \ / \ 0.963$	$37.97 \ / \ 0.950$	$37.77 \ / \ 0.946$	
		20	$37.99 \ / \ 0.949$	$38.02 \ / \ 0.949$	$36.56 \ / \ 0.925$	$36.56 \ / \ 0.925$	Uformer		20	$38.91 \ / \ 0.961$	$38.77 \ / \ 0.961$	$38.07 \ / \ 0.948$	$37.67 \ / \ 0.942$	
	first-layer	5	$37.93 \ / \ 0.948$	$37.95 \ / \ 0.948$	$36.48 \ / \ 0.923$	$36.46 \ / \ 0.923$		first-layer	5	$38.89 \ / \ 0.965$	$38.85 \ / \ 0.965$	$37.75 \ / \ 0.952$	$37.69 \ / \ 0.950$	
		10	$37.76 \ / \ 0.943$	$37.83 \ / \ 0.945$	$36.29 \ / \ 0.915$	$36.28 \ / \ 0.915$			10	$38.82 \ / \ 0.964$	$38.78 \ / \ 0.964$	$37.76 \ / \ 0.951$	$37.65 \ / \ 0.948$	
		20	$37.47 \ / \ 0.935$	$37.67 \ / \ 0.941$	$35.95 \ / \ 0.902$	$36.02 \ / \ 0.904$			20	$38.71 \ / \ 0.962$	$38.69 \ / \ 0.963$	$37.71 \ / \ 0.946$	$37.54 \ / \ 0.943$	
	last-layer	5	$38.12 \ / \ 0.952$	$38.13 \ / \ 0.952$	$36.69 \ / \ 0.931$	36.70 / 0.931		last-layer	5	$38.98 \ / \ 0.965$	$38.99 \ / \ 0.965$	$37.68 \ / \ 0.949$	$37.69 \ / \ 0.950$	
		10	$38.13\ /\ 0.952$	$38.14 \ / \ 0.952$	$36.75 \ / \ 0.931$	$36.77 \ / \ 0.931$			10	$39.00 \ / \ 0.965$	$39.01 \ / \ 0.965$	$37.79 \ / \ 0.949$	$37.81 \ / \ 0.949$	
		20	$38.13\ /\ 0.952$	$38.14 \ / \ 0.952$	<u>36.78</u> / 0.930	36.81 / 0.930			20	$39.01 \ / \ 0.965$	$39.01 \ / \ 0.965$	$37.90 \ / \ 0.949$	$37.92 \ / \ 0.949$	
	meta-learning	5	38.23 / 0.955	38.23 / 0.956	$36.56 \ / \ 0.936$	36.54 / 0.935		meta-learning	5	39.10 / <u>0.967</u>	39.09 / 0.967	37.77 / 0.957	37.87 / <u>0.955</u>	
		10	$\underline{38.23}$ / 0.955	$\underline{38.25}$ / $\underline{0.955}$	$36.66 \ / \ 0.934$	$36.65 \ / \ \underline{0.934}$			10	<u>39.20</u> / 0.966	39.11 / 0.966	$38.26 \ / \ 0.957$	38.07 / 0.952	
		20	38.17 / 0.953	38.20 / 0.954	$35.69 \ / \ 0.931$	36.68 / 0.930			20	39.11 / 0.964	38.97 / 0.963	$38.52 \ / \ 0.956$	38.00 / 0.947	
	LAN (Ours)	5	$38.22 \ / \ \underline{0.954}$	$38.16 \ / \ 0.953$	36.73 / 0.934	$36.66 \ / \ 0.932$		LAN (Ours)	5	39.12 / <u>0.967</u>	$39.00 \ / \ \underline{0.966}$	$37.82 \ / \ 0.955$	$37.69 \ / \ 0.951$	
		10	$38.29 \; / \; 0.955$	$38.22 \ / \ 0.954$	36.79 / 0.936	$36.71 \ / \ 0.933$			10	$39.21 \ / \ 0.968$	39.05 / <u>0.966</u>	$38.09 \ / \ 0.960$	$37.83 \ / \ 0.953$	
		20	$38.29 \ / \ 0.955$	$38.31 \ / \ 0.956$	$\underline{36.78}$ / 0.938	<u>36.80</u> / 0.935			20	39.20 / 0.968	39.10 / 0.967	$\underline{38.36} \ / \ 0.964$	$\underline{38.02} \ / \ 0.956$	
Restormer	pretrained	-	39.03 / 0.966		38.03	38.03 / 0.951								
		5	$39.09 \ / \ 0.966$	$39.04 \ / \ 0.965$	$38.14 \ / \ 0.952$	$38.07 \ / \ 0.951$								
	full-trainable	10	$39.12 \ / \ 0.965$	$39.04 \ / \ 0.965$	$38.23 \ / \ 0.952$	$38.08 \ / \ 0.950$								
		20	$39.14 \ / \ 0.965$	$38.98 \ / \ 0.964$	$38.35 \ / \ 0.953$	$38.05 \ / \ 0.948$								
	first-layer	5	$39.04 \ / \ 0.965$	$39.00 \ / \ 0.965$	$38.12 \ / \ 0.951$	$38.07 \ / \ 0.950$		38.4 -						
		10	$38.96 \ / \ 0.964$	$38.89 \ / \ 0.964$	$38.05 \ / \ 0.950$	$37.95 \ / \ 0.948$		38.2 -						
		20	$38.74 \ / \ 0.961$	$38.66 \ / \ 0.961$	$37.65 \ / \ 0.943$	$37.52 \ / \ 0.941$		(BD)						
	last-layer	5	$39.07 \ / \ 0.965$	$39.08 \ / \ 0.965$	$38.09 \ / \ 0.951$	$38.10 \ / \ 0.951$		Э 38.0 -						
		10	$39.06 \ / \ 0.965$	$39.07 \ / \ 0.965$	$38.12 \ / \ 0.950$	$38.14 \ / \ 0.950$		SG 37.8 -			Eull-trainable			
		20	$39.02 \ / \ 0.964$	$39.03 \ / \ 0.964$	$38.12 \ / \ 0.948$	$38.14 \ / \ 0.948$		27.6			Pretrained			
	meta-learning	5	$39.12 \ / \ 0.966$	$39.12 \ / \ 0.966$	$38.15 \ / \ 0.954$	$38.15 \ / \ 0.953$		37.0						
		10	$39.18 \ / \ 0.966$	$39.13 \ / \ 0.966$	$38.34 \ / \ 0.954$	$38.21\ /\ 0.952$		() 5	10 15	20 25 30			
		20	39.19 / 0.965	39.06 / 0.964	$38.49 \ / \ 0.954$	38.17 / 0.949				Iteration				
		5	$39.23 \ / \ \underline{0.968}$	$39.09 \ / \ \underline{0.967}$	$38.31 \ / \ 0.957$	$38.14 \ / \ 0.953$		Figure 5. Plot of performance in PSNR over the number of adap-						
	LAN (Ours)	10	$39.30 \ / \ 0.969$	$\underline{39.14}$ / $\underline{0.967}$	$\underline{38.58} \ / \ \underline{0.961}$	$\underline{38.25}$ / $\underline{0.955}$		tation iterations. Results are obtained with Uformer finetuned via						
		20	39.28 / 0.969	$39.17 \ / \ 0.968$	$38.86 \ / \ 0.965$	38.38 / 0.958		ZS-N2N on Nam Dataset.						

Experiments: Qualitative results

Noisy image

Adapted noisy image by LAN

Experiments: Noise adaptation

Figure 4. Visualization of synthetic noisy images. Noisy image with train noise is a noisy image that is used for pretraining a denoising network (DnCNN). Noisy image with new noise contain a new noise that is different from pretraining. Adapted noisy image by LAN is a result of noise adaptation of noisy image with new noise. We observe that noise in the adapted noisy image becomes more similar to noisy image with train noise. Particularly, we observe that noise has been added to the top of the image, where there was previously no noise. As a result, LAN helps achieve better denoising performance.

Figure 6. Histogram of synthetic noise distributions. Adapted noise distribution (green) by LAN is shown to shift the new noise distribution (orange) to already seen noise distribution (blue) during training.

Model	Salf loss	LAN / Full-trainable				
WIUUEI	2011-1022	Time	Memory			
Pastormar	ZS-N2N	79.88 %	93.27%			
Restormer	Nbr2Nbr	93.04 %	92.22%			
Liformer	ZS-N2N	74.10 %	73.75%			
UTOTILET	Nbr2Nbr	85.24%	74.21%			

Table 2. The runtime and memory efficiency ratio of LAN (ours) to full-trainable based on an image size of 256x256.