THU-AM-308

Towards Efficient Replay in Federated Incremental Learning

<u>Yichen Li¹, Qunwei Li², Haozhao Wang¹, Ruixuan Li^{1*}, Wenliang Zhong², Guannan Zhang²</u>

¹Huazhong University of Science and Technology, Wuhan, China

²Ant Group, Hangzhou, China

Federated Incremental Learning

I. Background

II. Limitations and MotivationsIII.Methodology and TheoryIV.Experimental ResultsV.Conclusion

Background: Federated Learning

FedAvg: <u>Global model</u> is obtained by <u>computing the</u> <u>average</u> of <u>parameters</u> of multiple local models

Background: Continual Learning

Three Typical Scenarios

Class-Incremental Learning

Domain-Incremental Learning

 $P(X^1) \neq P(X^2)$

Task-Incremental Learning

 $P(Y^1) \neq P(Y^2), P(X^1) \neq P(X^2), |Y^1| \neq |Y^2|$

Limitations

- **Dynamic**: existing FL methods typically assume the data in each client is fixed or static.
- > data often comes in an incremental manner, where the data domain may increase dynamically.
- Catastrophic Forgetting: clients are difficult to learn new data while retaining previous information
 especially when data is non-identically and independently distributed (Non-IID) across clients.

Motivations

- ◆ Assumption: each client can cache a few samples with the local storage for replay
- lack enough storage space to retain full data

An example of 3-client in FIL scenario

Synergistic Replay with Important Samples !

Methodology: Re-Fed

- How to ensure that samples can balance local training and global data distribution?
- How to quantify the importance of samples?

Lemma 1 (Proportion of Global and Local Information.) For all $\lambda \in (0, 1)$ and $\lambda \to f(\lambda_k)$ is non-increasing:

$$\frac{\partial \nabla f(\hat{v}_k(\lambda))}{\partial \lambda} \leq 0$$

$$\frac{\partial ||\hat{v}_k(\lambda) - \hat{w}||}{\partial \lambda} \geq 0.$$
(11)

Then, for $k \in [K]$, we can get:

$$\lim_{\lambda \to 0} \hat{v}_k(\lambda) := \hat{w}.$$
(12)

Lemma 2 ([21] Lemma 13.) Under assumptions above, $f(v_k)$ is μ_k -strongly convex at each communication round t, we have:

$$\mathbb{E}\left[||v_{k}^{t+1} - \hat{v}_{k}||^{2}\right] \leq (1 - \eta(\mu_{k} + q(\lambda))) \mathbb{E}\left[||v_{k}^{t} - \hat{v}_{k}||^{2}\right] + \eta^{2} \left(\sigma + q(\lambda)(M + \frac{\sigma}{\mu_{k}})\right)^{2} + \eta^{2}q(\lambda)^{2} \mathbb{E}\left[||w^{t} - \hat{w}||^{2}\right] + 2\eta^{2}q(\lambda) \left(\sigma + q(\lambda)(M + \frac{\sigma}{\mu_{k}})\right) \sqrt{\mathbb{E}\left[||w^{t} - \hat{w}||^{2}\right]} + 2\eta q(\lambda) \sqrt{\mathbb{E}\left[||v_{k}^{t} - \hat{v}_{k}||^{2}\right] \mathbb{E}\left[||w^{t} - \hat{w}||^{2}\right]}.$$
(13)

Theorem 3.1 (Personalized Informative Model.) Assuming the global model w^t converges to the optimal model \hat{w} with g(t) for any client $k \in [K]$ at each communication round t: $\mathbb{E}\left[||w^t - \hat{w}||^2\right] \leq g(t)$ and $\lim_{t\to\infty} g(t) = 0$, then there exists a constant $C < \infty$ such that the personalized informative model v_k^t can converge to the optimal model \hat{v}_k with Cg(t).

Experiments - Settings

Datasets

Class-Incremental Learning	Domain-Incremental Learning					
◆ CIFAR10	 Digit10 					
◆ CIFAR100	 Office31 					
 Tiny-ImageNet 	 Domain Net 					
 \						

Baselines

Traditional FL Methods

- FedAvg
- FedProx

Customed Methods

- Fixed
- ◆ DANN+FL
- Shared

Existing FIL Methods

- ♦ FCIL
- ♦ FedDIL

Test Accuracy & Communication Efficiency

Scenario	Dataset	FedAvg	FedProx	Fixed	DANN+FL	Shared	FCIL	FedCIL	Re-Fed
Class-Incremental	CIFAR10 ($\alpha = 1.0$)	26.73±1.12	25.87±0.68	19.21±0.06	24.86±2.31	23.91±1.70	25.04±0.11	27.35±1.24	29.22±0.49
	CIFAR100 ($\alpha = 5.0$)	17.21±1.35	18.03±0.91	9.27±0.22	19.73±2.17	18.30±1.53	23.02±0.66	17.98±1.46	25.61±0.88
	Tiny-ImageNet ($\alpha = 10$)	27.58±0.74	21.82±0.90	12.34±0.23	20.77±1.31	22.19±0.54	29.58±0.15	24.41±0.95	32.07±0.27
Domain-Incremental	Digit10 ($\alpha = 0.1$)	77.59±0.39	79.09±0.58	71.26±0.04	76.44±1.05	74.77±0.23	77.59±0.39	83.85±0.80	85.96±0.14
	Office31 ($\alpha = 1$)	39.25±1.61	43.01±1.59	37.44±0.72	45.21±2.10	37.55±0.69	39.25±1.61	46.26±2.24	50.80±0.77
	DomainNet ($\alpha = 10$)	51.73±2.32	49.12±2.71	46.30±1.42	50.01±3.31	41.76±1.26	51.73±2.32	47.28±3.01	56.66±0.50

Scenario	Dataset	FedAvg	FedProx	Fixed	DANN+FL	Shared	FCIL	FedCIL	Re-Fed
Class-Incremental	CIFAR10 (Task:5)	613±2.67	685±3.00	142±0.67	712±3.67	574±1.33	590±2.67	738±4.00	562±1.67
	CIFAR100 (Task:10)	1103±2.33	1246±3.00	137±2.00	1258±4.67	1154±3.33	1095±2.67	1311±5.67	1039±4.33
	Tiny-ImageNet (Task:10)	1197±2.67	1234±2.67	132±3.00	1305±3.67	1278±4.33	1185±2.33	1317±3.33	1128±3.67
Domain-Incremental	Digit10 (Task:4)	410±1.67	412±0.67	112±0.33	483±1.33	372±2.00	410±1.67	419±2.67	325±1.33
	Office31 (Task:3)	413±2.67	429±2.00	144±0.67	436±3.67	391±1.12	413±2.67	431±3.33	388±1.67
	DomainNet (Task:6)	726±3.33	767±2.67	141±1.67	752±4.00	694±2.67	726±3.33	791±3.67	661±2.33

Data Heterogeneity

We propose a simple framework called **Re-Fed** to address the issues of catastrophic forgetting and data heterogeneity in federated continual learning. It has the following advantages:

- ✓ <u>Optimization</u>: Re-Fed allows for the use of aggregation methods other than FedAvg to update the global model while maintaining convergence properties.
- ✓ <u>Privacy</u>: Unlike typical FL algorithms, Re-Fed does not transmit additional information over the network, thus avoiding privacy issues that arise from applying sample reconstruction methods for data replay.
- <u>Resources:</u> Re-Fed enables each client to train a base model using only its local training data without requiring additional distilled or generated augmented data, thereby avoiding extra computational costs or storage overhead.

Thank You

<u>Yichen Li</u>, Qunwei Li, Haozhao Wang, Ruixuan Li, Wenliang Zhong, Guannan Zhang