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Federated Incremental Learning



Background: Federated Learning

Parameter  
server

...

FedAvg: Global model is obtained by computing the 
average of parameters of multiple local models



Background: Continual Learning

• Class-Incremental Learning

𝑃(𝑌!) ≠ 𝑃(𝑌")
• Domain-Incremental Learning

𝑃(𝑋!) ≠ 𝑃(𝑋")
• Task-Incremental Learning

𝑃(𝑌!) ≠ 𝑃(𝑌"), 𝑃 𝑋! ≠ 𝑃 𝑋" , |𝑌!| ≠ |𝑌"|

Illustration of Continual Learning/Incremental Learning/Lifelong Learning Three Typical Scenarios



i.e. Domain-Incremental learning (DIL)

u Dynamic: existing FL methods typically assume the data in each client is fixed or static. 
Ø data often comes in an incremental manner, where the data domain may increase dynamically.

u Catastrophic Forgetting: clients are difficult to learn new data while retaining previous information
Ø especially when data is non-identically and independently distributed (Non-IID) across clients.

Limitations



An example of 3-client in FIL scenario 

Synergistic Replay with Important Samples !

u Assumption: each client can cache a few samples with the local storage for replay
Ø lack enough storage space to retain full data

Motivations



u Sample Importance Score

u Personalized Informative Model

• How to ensure that samples can balance local training and global data distribution?
• How to quantify the importance of samples?

Methodology: Re-Fed



Theory



Baselines

Traditional FL Methods 
u FedAvg
u FedProx

Datasets

Class-Incremental Learning
u CIFAR10
u CIFAR100
u Tiny-ImageNet

Domain-Incremental Learning
u Digit10
u Office31
u Domain Net

Customed Methods
u Fixed
u DANN+FL
u Shared

Existing FIL Methods
u FCIL
u FedDIL

Experiments - Settings



Test Accuracy & Communication Efficiency

Experiments - Performance Overview



Data Heterogeneity

a smaller 𝜶	indicates higher 
data heterogeneity

Experiments - Performance Overview



Conclusions

We propose a simple framework called Re-Fed to address the issues of catastrophic forgetting and data 
heterogeneity in federated continual learning. It has the following advantages:

ü Optimization: Re-Fed allows for the use of aggregation methods other than FedAvg to update the global 
model while maintaining convergence properties.

ü Privacy: Unlike typical FL algorithms, Re-Fed does not transmit additional information over the network, 
thus avoiding privacy issues that arise from applying sample reconstruction methods for data replay.

ü Resources: Re-Fed enables each client to train a base model using only its local training data without 
requiring additional distilled or generated augmented data, thereby avoiding extra computational costs or 
storage overhead.
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