

Blur Conversion for Unsupervised Image Deblurring on Unknown Domains

Bang-Dang Pham¹

Cuong Pham^{1,3}

Phong Tran²

Anh Tran¹

¹VinAl Research, Vietnam

²MBZUAI, UAE

³Posts & Telecommunications Inst. of Tech., Vietnam

⁴University of Adelaide, Australia

https://zero1778.github.io/blur2blur/

Problem & Motivation

How can we deblur blurry images captured by any specific camera

Problem & Motivation

- Data-Driven Approaches
 - Supervised Deblurring
 - High-quality restored results
 - Consistent and Reliable
 - Camera-Specific Deblurring
 - Learn well camera blur kernel
- Unsupervised Approaches
 - **No need paired data**

- × Need paired data
- X Overfit blur kernel space
- X Underperform on unseen-blur
- Require "expensive" setups (beam splitter, geometrical alignment,...)
- \mathbf{X} Cannot restore complex blur patterns

Problem & Motivation

- Data-Driven Approaches
 - Supervised Deblurring

High-quality restored results

Consistent and Reliable

- Camera-Specific Deblurring
 - Learn well camera blur kernel
- Unsupervised Approaches

- × Need paired data
- \times Overfit blur kernel space
- X Underperform on unseen-blur

Require "expensive" setups (beam splitter, geometrical alignment,...)

imes Cannot restore complex blur patterns

Our Objective

- Data-Driven Approaches
 - Supervised Deblurring

High-quality restored results

Consistent and Reliable

- Camera-Specific Deblurring
 - Learn well camera blur kernel
- Unsupervised Approaches

- × Need paired data
- \times Overfit blur kernel space
- imes Underperform on unseen-blur

Require "expensive" setups (beam splitter, geometrical alignment,...)

 \times Cannot restore complex blur patterns

Proposed Method

We propose a novel framework called **Blur2Blur** – converting images with **Unknown Blur** kernel into Known Blur kernel version, effectively deblurred by a supervised model while preserving original content

If we use another known paired data

If we use another known paired data to train deblurring model

If we use another known paired data to train deblurring model

Known Blur

Known Blur

To generate Converted Image

•	Preserved input content <i>L_{rec}</i>
\mathcal{L}_{re}^{G}	$f_{ec}(G) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{t_i} \mathbb{E}_{y_i \sim \mathcal{B}}[\phi(y_i) - \phi(G(y_i)) _1]$

where M is the number of levels \mathcal{Y}_i is the input image at scale level $i \ \phi(.)$ is a pretrained feature extractor

- Perceptual Loss
- Adopt multi-scale architecture backbone (MIMO-Unet[1])

To generate Converted Image

- Preserved input content \mathcal{L}_{rec} $\mathcal{L}_{rec}^{G}(G) = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{t_i} \mathbb{E}_{y_i \sim \mathcal{B}}[||\phi(y_i) - \phi(G(y_i))||_1]$ • Applied Known-blur kernel \mathcal{L}_{adv}
- $\mathcal{L}_{adv}(G, D) = \mathbb{E}_{y \sim \mathcal{K}}[\log D(y)] \\ + \mathbb{E}_{y \sim \mathcal{B}}[\log(1 D(G(y)))].$
- Penalty Gradient Regularization

 $\mathcal{L}_{grad}^{D}(D) = \mathbb{E}_{\hat{y} \sim \hat{\mathcal{B}}}[(\|\nabla_{\hat{y}} D(\hat{y})\|_{2} - 1)^{2}]$

• Total Loss

 $\mathcal{L}_{total}^{G}(G,D) = \mathcal{L}_{adv}(G,D) + \lambda_{rec}\mathcal{L}_{rec}(G)$ $\mathcal{L}_{total}^{D}(G,D) = -\mathcal{L}_{adv}(G,D) + \lambda_{grad}\mathcal{L}_{grad}(D)$

However...

- Known-Blur images from another dataset could have:
 - ✤ Color distribution gap
 - ✤ Image resolution difference
 - Device-dependent noise pattern
- Negatively affect to Discriminator and Blur Translator

Unknown Blur

RB2V

(Real)

Known Blur

GoPro (Synthetic)

(Pause and Zoom for best view)

Unknown Blur

Known Blur

(Pause and Zoom for best view)

Unknown DeBlur + NAFNet(GoPro)

REDS

(Synthetic)

RSBlur

(Real)

RB2V

(Real)

Known DeBlur + NAFNet(GoPro)

GoPro (Synthetic)

(Pause and Zoom for best view)

	RB2V_Street	REDS	RSBlur
NAFNet [3]			
w/ GoPro	24.78 / 0.714	25.80 / 0.880	26.33 / 0.790
w/ Synthetic Data	22.10 / 0.644	25.07 / 0.853	23.53 / 0.659
w/ Blur2Blur (GoPro)	26.98 / 0.812	28.11 / 0.893	29.00 / 0.857
w/ the source domain*	28.72 / 0.883	29.09 / 0.927	33.06 / 0.888
Restormer [37]			
w/ GoPro	23.34 / 0.698	25.43 / 0.775	25.98 / 0.788
w/ Synthetic Data	23.78 / 0.655	24.76 / 0.753	23.34 / 0.651
w/ Blur2Blur (GoPro)	<u>25.97</u> / <u>0.750</u>	<u>27.55</u> / <u>0.885</u>	<u>28.89</u> / <u>0.850</u>
w/ the source domain*	27.43 / 0.849	28.23 / 0.916	32.87 / 0.874
Generalized Deblurring			
BSRGAN [38]	23.31 / 0.645	26.39 / 0.803	27.11 / 0.810
RSBlur [25]	23.42 / 0.603	26.32 / 0.812	26.98 / 0.798
Unpaired Training			
CycleGAN [41]	21.21 / 0.582	23.92/0.775	23.34 / 0.782
DualGAN [35]	21.02 / 0.556	23.50 / 0.700	22.78 / 0.704

The pPSNR[↑]/pSSIM[↑] scores. The best scores are in **bold** and the second best score are in <u>underline</u>. For a supervised method, NAFNet or Restormer, we assess its upper-bound of deblurring performance by training it on the *training set of the source dataset**.

Experiments ~ One-to-Many

Unknown Blur

Known Blur Deblurred

REDS (Synthetic)

GoPro (Synthetic)

Experiments ~ Hand Pose Application

Experiments ~ Extreme Real Blur

Conclusion

- We propose **Blur2Blur**, an effective approach to address the practical challenge of adapting image deblurring techniques to handle unseen blur
- "Plug-and-play module" for better utilizing pretrained of state-of-the-arts models.
- By conducting evaluations with real-world blurry datasets, affirming its role as a versatile deblurring model for general applications, opening up new unsupervised approaches.
- Contact for more: <u>bangdang2000@gmail.com</u>

