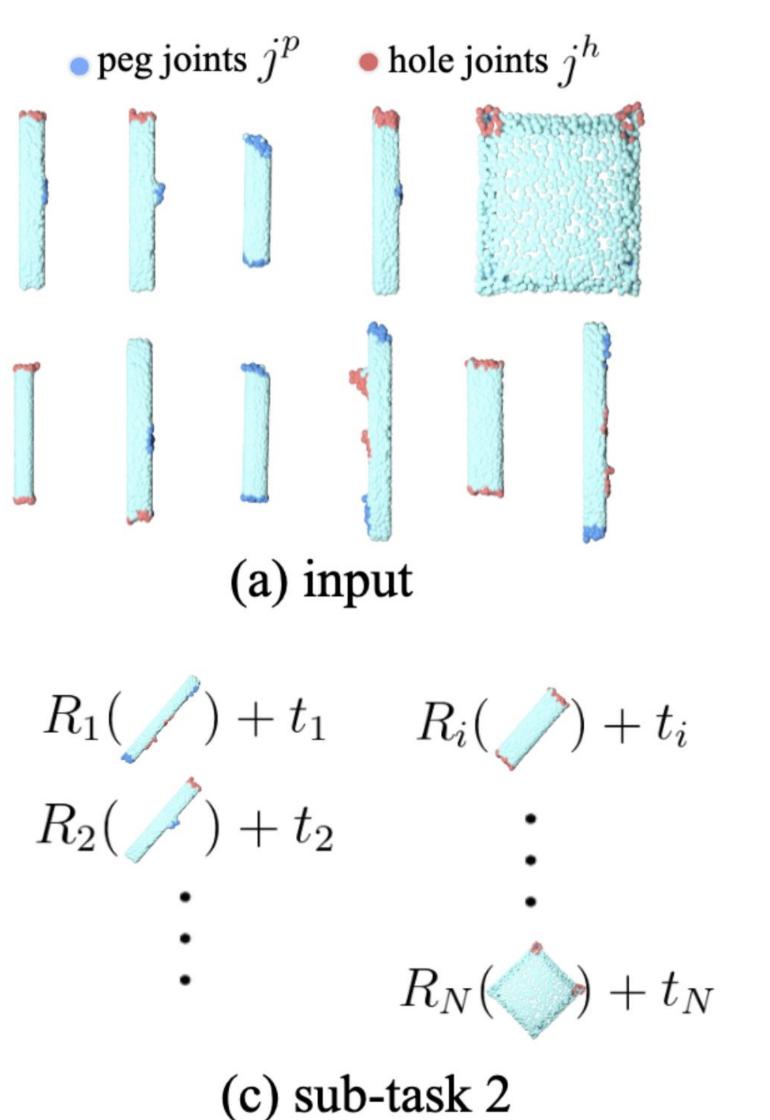


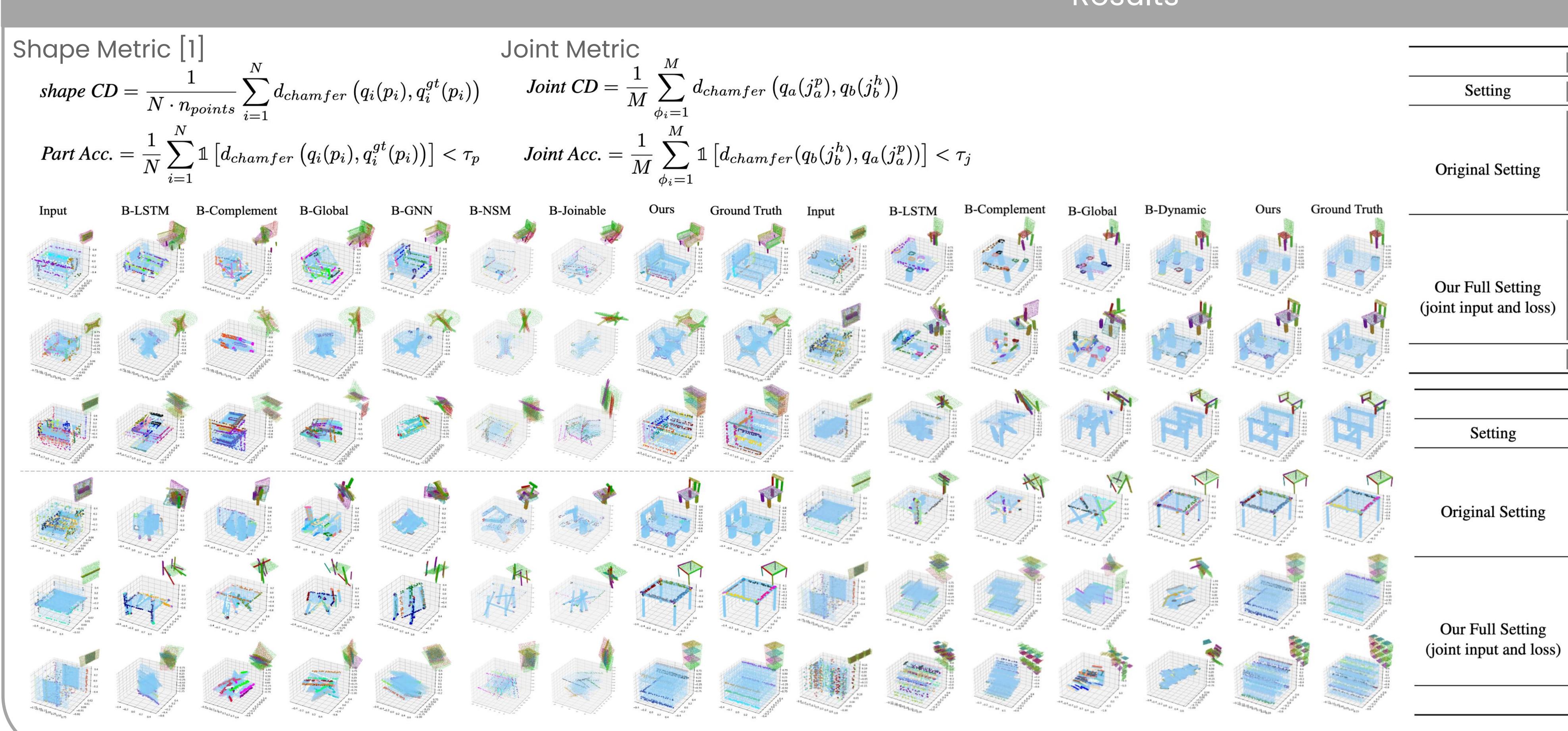
Category-level Multi-Part Multi-Joint 3D Shape Assembly Yichen Li^{1,2}, Kaichun Mo³, Yueqi Duan⁴, He Wang⁵, Jiequan Zhang², Lin Shao⁶, Wojciech Matusik¹, Leonidas Guibas²

Observation & Motivation

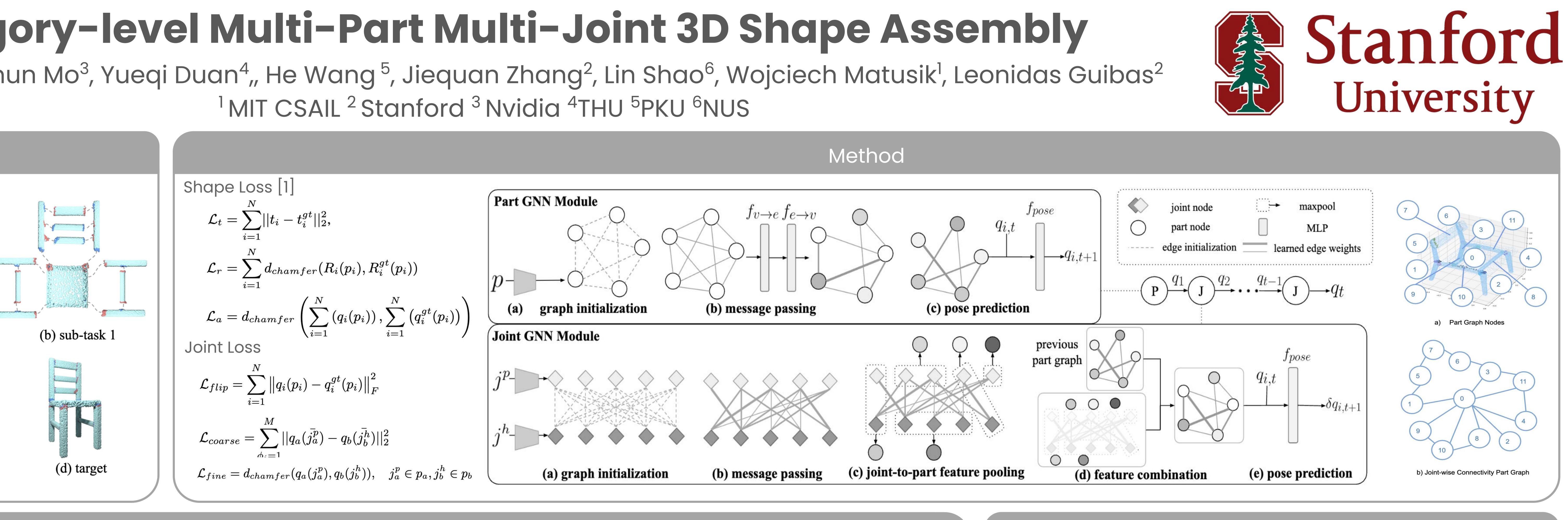
Prior works on 3D shape assembly [1, 2] ignore the matching between joints, generating geometrically consistent shapes, but cannot be used for assembly in the real world.

We introduce the notion of joints and propose a new 3D shape assembly task from a multi-part multi-joint perspective. The tasks involves a bilateral optimization of discrete joint matching and continuous pose prediction.





¹ MIT CSAIL ² Stanford ³ Nvidia ⁴THU ⁵PKU ⁶NUS



Results

		Shape Chamfer Distance \downarrow				Part Pose Accuracy ↑				
	Method	Chair	Table	Cabinet	Average	Chair	Table	Cabinet	Average	
22	B-Global	0.015	0.013	0.008	0.013	32.8	30.1	33.6	31.4	
	B-LSTM	0.017	0.026	0.007	0.021	39.4	22.5	44.4	30.8	
	B-Complement	0.028	0.034	0.222	0.046	11.0	5.33	0.0	7.2	
	B-GNN	0.007	0.008	0.006	0.007	65.3	61.4	45.0	61.7	
	B-NSM	0.013	0.022	0.012	0.018	25.3	48.2	18.9	37.0	
8	B-Global	0.029	0.022	0.013	0.024	5.4	12.0	15.0	9.6	
	B-LSTM	0.037	0.029	0.017	0.031	4.4	4.1	15.3	5.1	
	B-Complement	0.048	0.044	0.029	0.044	4.5	8.0	11.6	6.9	
	B-GNN	0.034	0.039	0.021	0.036	11.5	3.2	10.4	7.0	
)	B-NSM	0.014	0.032	0.020	0.024	19.0	12.1	14.7	15.0	
3	B-Joinable	0.026	0.037	0.025	0.032	12.6	7.3	12.1	9.7	
	Ours	0.006	0.007	0.005	0.006	72.8	67.4	63.3	69.2	

	Joint Chamfer Distance \downarrow				Joint Matching Accuracy [↑]				
Method	Chair	Table	Cabinet	Average	Chair	Table	Cabinet	Average	
B-Global	0.712	0.847	0.667	0.780	13.4	15.8	10.7	14.5	
B-LSTM	0.756	0.728	0.651	0.733	17.0	13.2	14.8	14.8	
B-Complement	0.901	0.977	1.074	0.954	7.5	8.3	23.6	9.2	
B-GNN	0.725	0.855	0.683	0.791	24.4	30.0	18.6	26.9	
B-NSM	0.697	0.717	0.700	0.708	15.1	16.9	17.1	16.2	
B-Global	0.513	1.268	0.488	0.912	12.7	4.0	6.9	7.6	
B-LSTM	0.394	0.875	0.467	0.655	20.3	7.7	13.8	13.1	
B-Complement	0.456	0.647	0.503	0.561	17.2	15.5	17.0	16.3	
B-GNN	0.379	0.786	0.416	0.598	21.5	10.3	20.0	15.4	
B-NSM	0.556	0.698	0.517	0.629	18.9	12.1	7.8	14.4	
B-Joinable	0.653	0.812	0.483	0.725	16.1	13.9	9.4	14.4	
Ours	0.352	0.602	0.620	0.505	57.2	50.6	27.5	51.4	

- Our work has the following contributions:
- We consider the concept of joint for the problem of category-level multi-part 3D shape assembly.
- We introduce a joint-annotated part dataset as well as a set of evaluation metrics to examine the performance.
- We propose a novel hierarchical graph network that simultaneously optimizes for both holistic shape structure and the joint alignment accuracy.
- Extensive experiments show that our method not only improves both shape structure and joint alignment over baseline method.

- Extend to upstream task of joint detection from part geometries.
- Extend to more complicated joints for this problem and construct a general formulation for all possible joint types.
- Sequential planning for joint alignment to better enable vision algorithms to be deployed in autonomous systems.
- [1] Yichen Li, Kaichun Mo, Lin Shao, Minhyuk Sung, and Leonidas Guibas. Learning 3d part assembly from a sigle image. In Computer Vision–ECCV 2020. [2] Yun-Chun Chen, Haoda Li, Dylan Turpin, Alec Jacobson, and Animesh Garg. Neural shape mating: Self-supervised object assembly with adversarial shape priors. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2022. [3] Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele Grandi, Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, and Wojciech Matusik. Joinable: Learning bottom-up assembly of parametric cad joints. In Proceedings of the IEEE/CVF CVPR 2022.

Impacts & Conclusions

We note several possible future directions:

References