

Robust Emotion Recognition in Context Debiasing

Dingkang Yang, Kun Yang, Mingcheng Li, Shunli Wang, Shuaibing Wang, Lihua Zhang

Academy for Engineering and Technology, Fudan University, Shanghai, China

Background & Motivation

Context-Aware Emotion Recognition (CAER)

Mittal T, Guhan P, Bhattacharya U, et al. Emoticon: Context-aware multimodal emotion recognition using frege's principle. In CVPR 2020: 14234-14243.

Background & Motivation

The Context Bias in the CAER Task

- Context-specific semantics easily yield spurious shortcuts with emotion labels during training to confound the model, giving erroneous results.
- Conversely, our CLEF effectively corrects biased predictions.

- The indirect effect of the good context prior follows ensemble branches, narrowing the emotion candidate space.
- The bad direct effect follows the context branch, causing pure bias.

Methodology

In addition to the vanilla CAER model, we introduce an additional context branch in a non-intrusive manner to capture the pure context bias as the direct context effect. By comparing factual and counterfactual outcomes, our framework effectively mitigates the interference of the harmful bias and achieves debiased emotion inference.

Experiments

Methods mAP (%)		Methods	Accuracy (%)	
HLCR [7] 30.02		Fine-tuned VGGNet [43]	64.85	
TEKG [5]	31.36	Fine-tuned ResNet [13]	68.46	
RRLA [24]	32.41	SIB-Net [25]	74.56	
VRD [14]	35.16	MCA [56]	79.57	
SIB-Net [25]	35.41	GRERN [11]	81.31	
MCA [56]	37.73	RRLA [24]	84.82	
	27.02	VRD [14]	90.49	
EMOI-Net [19]	27.93	EMOT-Net [19]	74.51	
EMOI-Net + CLEF	31.67 († 3.74)	EMOT-Net + CLEF	77.03 († 2.52)	
CAER-Net [20]	23.85	CAER-Net [20]	73.47	
CAER-Net + CLEF	27.44 († 3.59)	CAER-Net + CLEF	75.86 († 2.39)	
GNN-CNN [65]	28.16	GNN-CNN [65]	77.21	
GNN-CNN + CLEF	32.18 († 4.02)	GNN-CNN + CLEF	79.53 († 2.32)	
CD-Net [53]	28.87	CD-Net [53]	85.33	
CD-Net + CLEF	32.51 († 3.64)	CD-Net + CLEF	88.41 († 3.08)	
EmotiCon [32]	35.28	EmotiCon [32]	88.65	
EmotiCon + CLEF	38.05 († 2.77)	EmotiCon + CLEF	90.62 († 1.97)	

Quantitative results on EMOTIC.

Quantitative results on CAER-S.

Experiments

	Testing Image	Ground Truth	Vanilla Method	w/ CLEF		Testing Image	Ground Truth	Vanilla Method	w/ CLEF
OTIC Dataset (q) (e)		Disconnection Disquietment Doubt/Confusion Engagement	Affection Happiness Peace Sympathy	Disconnection Disquietment Doubt/Confusion Engagement	(p) (p) (b)		Anger	Neutral	Anger
		Anticipation Doubt/Confusion Engagement	Anticipation Confidence Disapproval Disconnection Embarrassment	Anticipation Doubt/Confusion Engagement Suffering		e)	Нарру	Sad	Нарру
⊠ (c) ⊒		Confidence Excitement Sensitivity Yearning	Pain Suffering Sensitivity	Confidence Excitement Sensitivity Yearning	S (I		Disgust	Нарру	Disgust

Qualitative results of the vanilla and CLEF-based baseline on EMOTIC and CAER-S datasets.

Conclusion

- We are the first to embrace counterfactual thinking to investigate causal effects in the CAER task and reveal that the context bias as the adverse direct causal effect misleads the models to produce spurious prediction shortcuts.
- We devise CLEF, a model-agnostic CAER debiasing framework that facilitates existing methods to capture valuable causal relationships and mitigate the harmful bias in context semantics through counterfactual inference. CLEF can be readily adapted to state-of-the-art (SOTA) methods with different structures, bringing consistent and significant performance gains.
- Extensive experiments are conducted on several largescale CAER datasets. Comprehensive analyses show the broad applicability and effectiveness of our framework.

Thanks!