

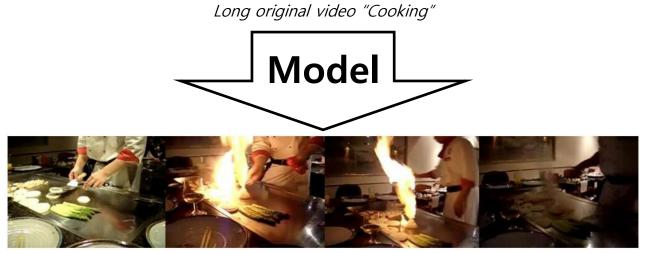
CSTA: CNN-based Spatiotemporal Attention for Video Summarization

Jaewon Son, Jaehun Park, Kwangsu Kim* SungKyunKwan University Applied AI & Computer Vision Lab

Poster: THU-JUN-20 17:00 ~ 19:00 Paper: https://arxiv.org/abs/2405.11905 Code: https://github.com/thswodnjs3/CSTA

Task: Video summarization

Train models to summarize long videos like the way humans do



Short summarized video by UnpairedVSN(2019, CVPR)

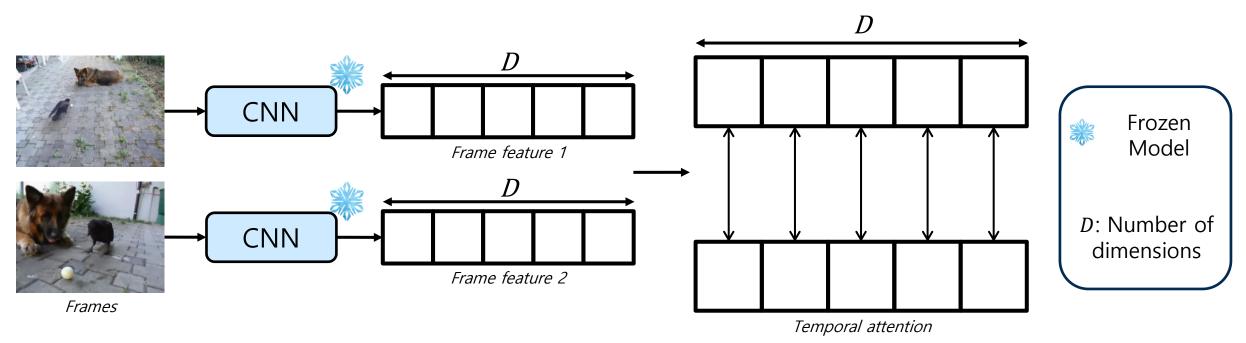
1. Models take long videos and are trained to understand which frames are important.

2. Based on decisions about keyframes, models generate summarized videos.

3. For better summarization, attention is commonly used to give weights for keyframes.

Preliminary: Temporal attention

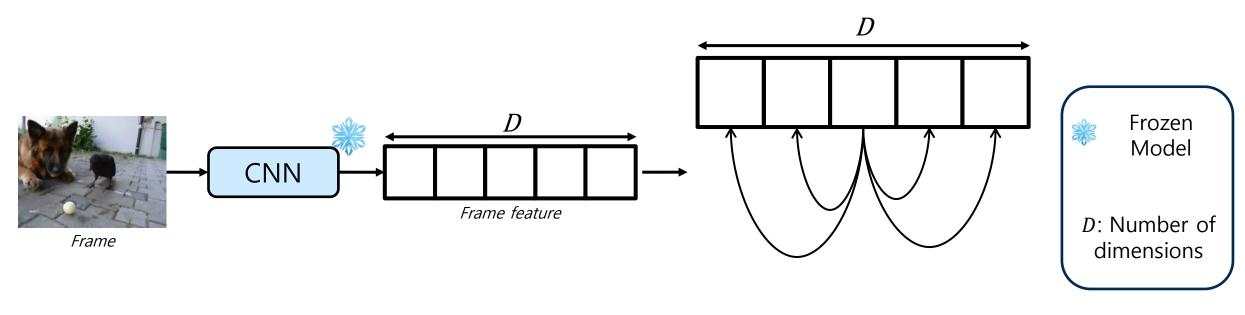
Attention is based on cross-correlations of each attribute between features



- 1. Frozen CNN models extract frame features.
- 2. Calculate attention by cross-correlations of each attribute between pairs of features.
- 3. Because of correlations between different frames, it is called temporal attention.

Problem: Temporal attention lacks spatial weights

The importance of attributes in a feature differs from temporal attention



Spatial attention

- 1. Each attribute of features indicates the visual characteristics of frames.
- 2. All attributes have their own importance in the frame.
- 3. Reflecting spatial attention changes the weights of attributes.
- 4. Temporal attention changes based on the spatial attention.
- 5. For precise attention, considering both temporal and spatial attention is necessary.

Related work: Spatiotemporal attention methods

Intra-Frame

Attention Module

Intra-Frame

Attention Module

Intra-Frame

Attention Module

Intra-Frame Attention Module

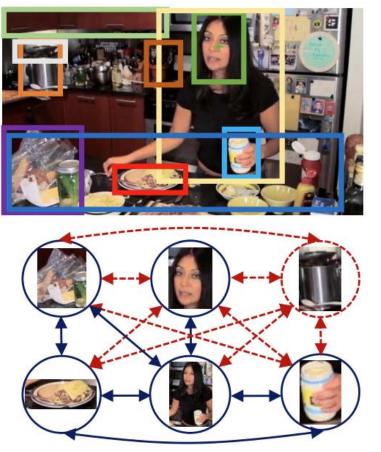
Spatial

Mappi

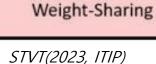
B

Module

Considering spatiotemporal attention requires huge costs for better results



RR-STG(2022, ITIP)



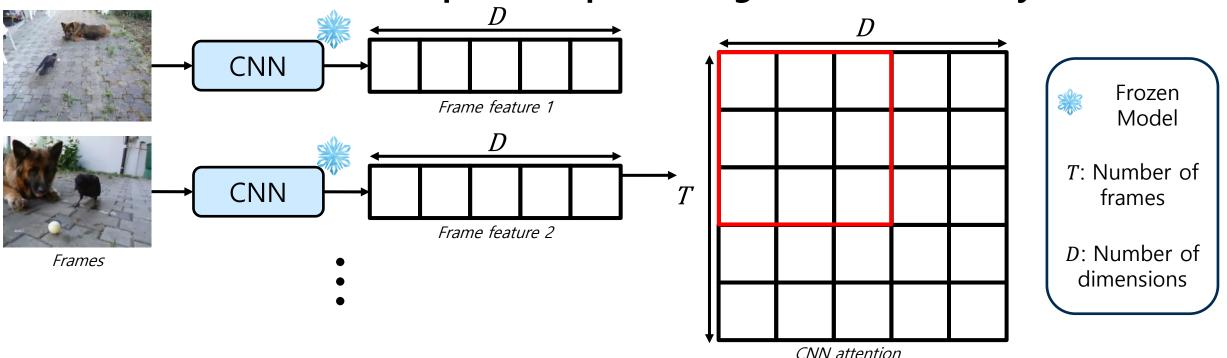
 Previous works employ an extra model to include spatial attention. (e.g. object detection, self-attention)

2. Using <u>spatiotemporal attention</u> <u>performs better</u> than temporal one only.

3. Processing every frame by additional model is very costly due to the long length of videos. Goal: Video summarization models considering spatiotemporal attention and efficiency.

Approach: CNN attention

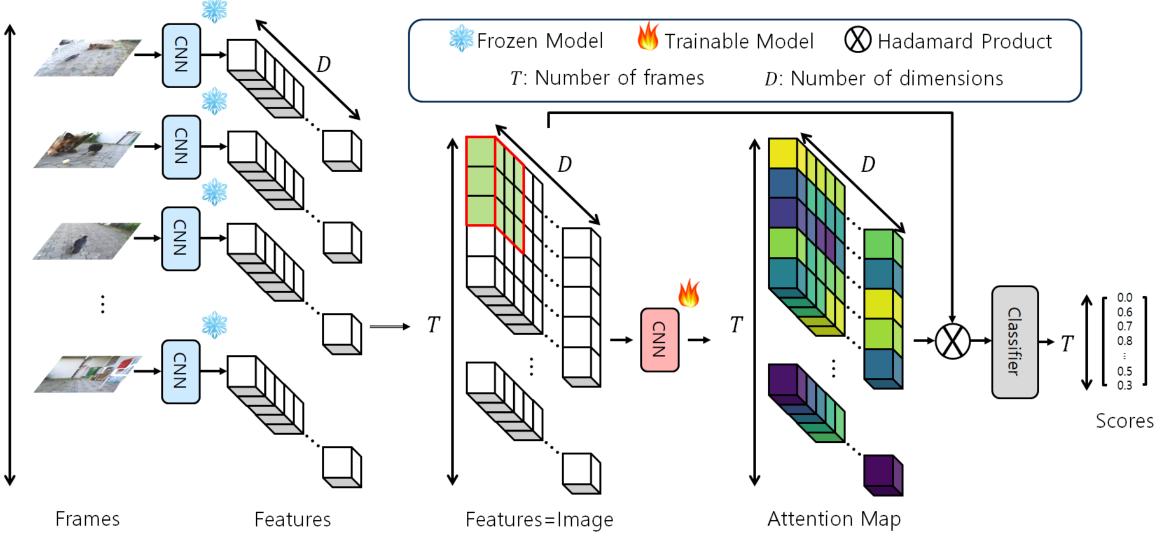
Use CNN as attention for spatiotemporal weights and efficiency



- 1. Stack all frame features to form image-like frame features.
- 2. Consider features as images, and apply 2D CNN models to features for spatiotemporal attention.
- 3. CNN can work as attention due to its ability to learn the absolute positions of images. -PosENet(2020, ICLR), CPVT(2023, ICLR)
- 4. CNN reduces computations for attention which works in a pairwise way. -CeiT(2021, ICCV), CvT(2021, ICCV), CmT(2022, CVPR)

Overview: (CSTA) CNN-based spatiotemporal attention

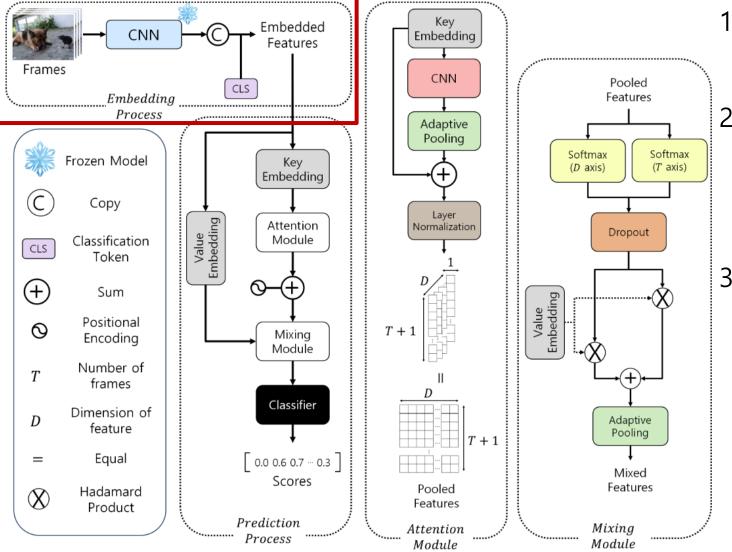
2D CNN creates attention maps by considering frame features as images



8

Architecture: Embedding Process

From frames, extract Embedded Features used as inputs

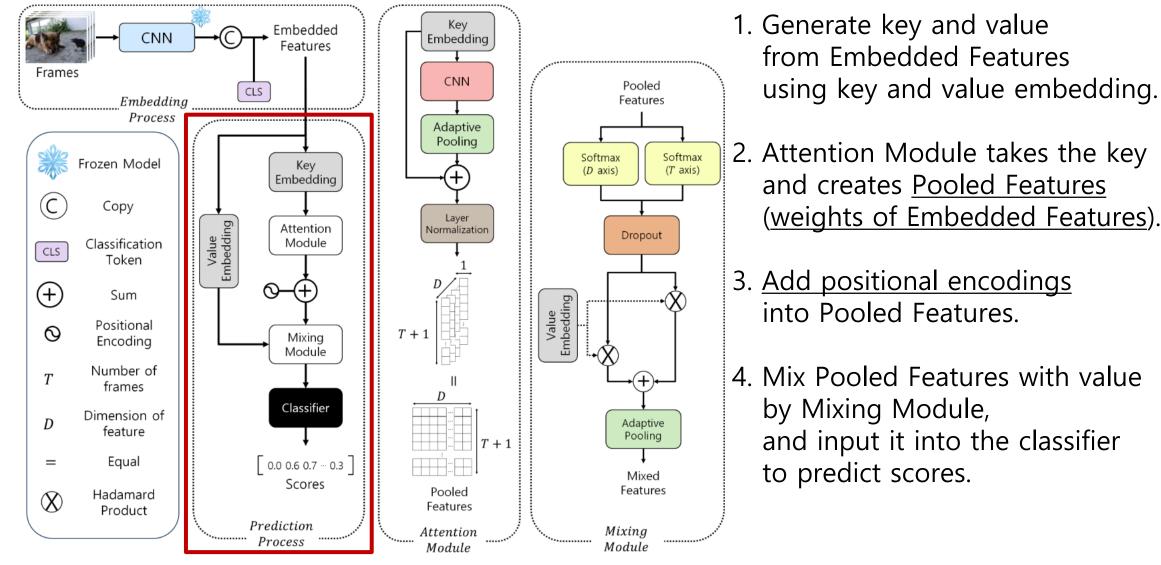


1. Frozen 2D CNN models (GoogleNet) extract features from frames.

- <u>Copy frame features two times</u> to utilize CNN models better, which are tailored for RGB images. (3 channels)
- 3. Generate Embedded Features by <u>concatenating the CLS token</u> <u>with frame features</u>, motivated by STVT(2023, ITIP).

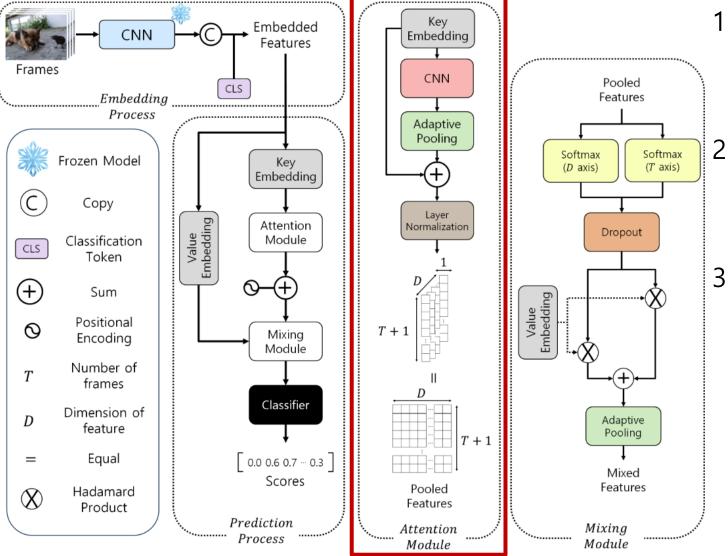
Architecture: Prediction Process

Predict scores using mixtures of Embedded Features and Pooled Features



Architecture: Attention Module

Produce the weighted values (Pooled Features) by using 2D CNN models



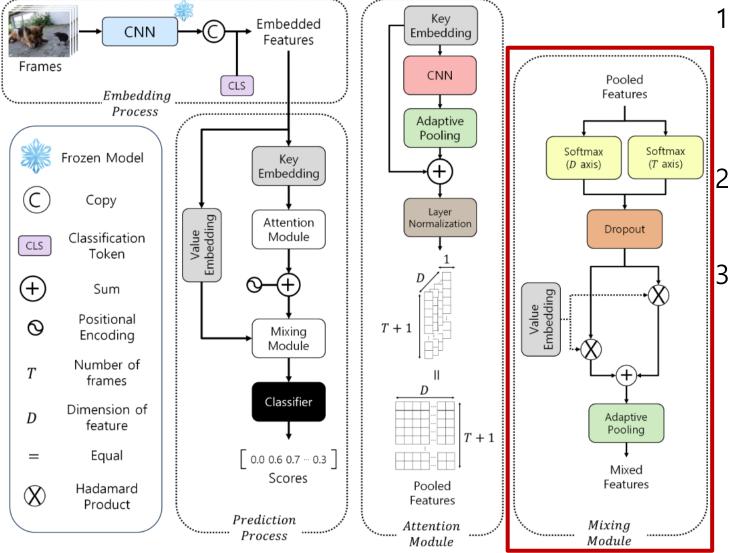
 Input the key into trainable 2D CNN models (GoogleNet) to reflect key attributes.

2. <u>Employ adaptive pooling</u> to match shape of weights with inputs, and mix that weights with those inputs.

3. For better training, use skip connection and layer normalization, and make Pooled Features.

Architecture: Mixing Module

Make attention maps from Pooled Features, and mix them with value



1. Apply softmax

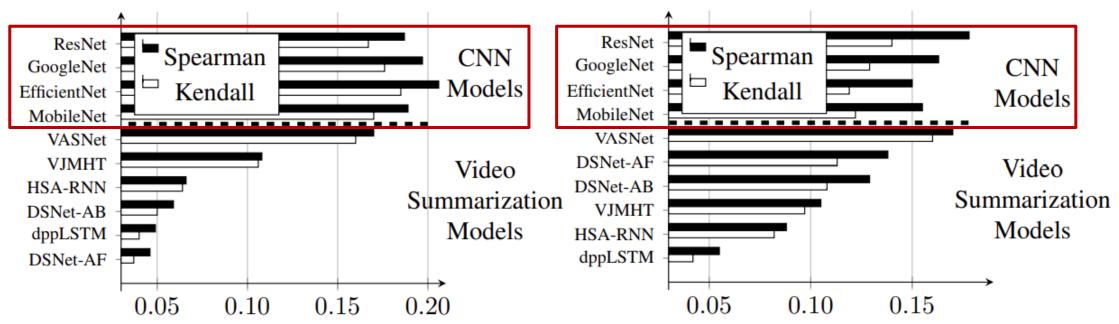
along the time and dimension axis, and make spatiotemporal attention maps.

- After using dropout, mix attention maps with value.
- <u>Utilize adaptive pooling</u> to adjust the size of outputs.

Experiment: Prove CNN as the attention mechanism

CNN can work as the attention based on video summarization results

TVSum



- 1. Target score of each frame ranges from 0 to 1, the same as the weighted values.
- 2. Good video summarization performance indicates the models are good as the attention algorithm.
- 3. CNN shows better summarization results than previous video summarization models, meaning it can be used as the attention mechanism.

Experiment: Performance comparison

CSTA achieves state-of-the-art results based on the overall performance

Method	SumMe			TVSum			Method	SumMe			TVSum		
	Rank	au	ho	Rank	au	ho	Method	Rank	au	ho	Rank	au	ho
Random	-	0.000	0.000	-	0.000	0.000	iPTNet[19]+	8.5	0.101	0.119	11	0.134	0.163
Human	-	0.205	0.213	-	0.177	0.204	A2Summ $[13]^M$	7	0.108	0.129	10	0.137	0.165
dppLSTM[42]	15	0.040	0.049	22	0.042	0.055	VASNet[7] T	6	0.160	0.170	9	0.160	0.170
$DAC[8]^T$	12.5	0.063	0.059	21	0.058	0.065	$AAAM[37]^T$	-	-	-	6.5	0.169	0.223
HSA-RNN[45]	11.5	0.064	0.066	19.5	0.082	0.088	$MAAM[37]^T$	-	-	-	5.5	0.179	0.236
$DAN[27]^{ST}$	-	-	-	19.5	0.071	0.099	VSS-Net[43] ^{ST}	-	-	-	3	0.190	0.249
$STVT[15]^{ST}$	-	-	-	15.5	0.100	0.131	$DMASum[39]^{ST}$	11	0.063	0.089	1	0.203	0.267
DSNet-AF[47] T	16	0.037	0.046	13.5	0.113	0.138	$RR-STG[48]^{ST}$	2.5	0.211*	0.234	7.5	0.162	0.212
DSNet-AB[47] ^{T}	13.5	0.051	0.059	15	0.108	0.129	$MSVA[9]^M$	3.5	0.200	0.230	5.5	0.190	0.210
$HMT[46]^M$	10.5	0.079	0.080	17.5	0.096	0.107	$SSPVS[25]^M$	3*	0.192	0.257*	4.5	0.181	0.238
$VJMHT[24]^T$	8.5	0.106	0.108	17.5	0.097	0.105	GoogleNet[35] ST	5	0.176	0.197	11.5	0.129	0.163
$\text{CLIP-It}[29]^M$	-	-	-	13.5	0.108	0.147	$CSTA^{ST}$	1	0.246	0.274	2*	0.194*	0.255*

Rank: Average performance rank between SumMe and TVSum datasets, τ: Kendall's coefficients, ρ: Spearman's coefficients

1. Considering the average rank for both SumMe and TVSum datasets, <u>CSTA shows the best results</u>.

- 2. DMASum performs slightly better than CSTA on TVSum, but much poorer on SumMe.
- 3. CSTA outperforms other spatiotemporal attention-based models thanks to the CNN.

Experiment: Computation analysis

CSTA shows better trade-offs between results and efficiency than others

Method		SumMe		TVSum			
Methou	Rank	FE	SP	Rank	FE	SP	
DSNet-AF[47] ^{T}	16	413.03G	1.18G	13.5	661.83G	1.90G	
$DSNet-AB[47]^T$	13.5	413.03G	1.29G	15	661.83G	2.07G	
$VJMHT[24]^T$	8.5	413.03G	18.21G	17.5	661.83G	28.25G	
VASNet[7] T	6	413.03G	1.43G	9	661.83G	2.30G	
$RR-STG[48]^{ST}$	2.5	54.82T	0.31G	7.5	88.41T	0.20G	
$MSVA[9]^M$	3.5	13.76T	3.63G	5.5	22.08T	5.81G	
$SSPVS[25]^M$	3	413.49G	20.72G	4.5	662.46G	44.22G	
$CSTA^{ST}$	1	413.03G	9.78G	2	661.83G	15.73G	

Rank: Average performance rank between SumMe and TVSum datasets FE: MACs for Feature Extraction, SP: MACs for Score Prediction

- 1. Measure MACs of feature extractions (FE) and score predictions (SC).
- 2. Based on the average rank of performance,

good summarization scores require huge costs or multi-modal data.

3. CSTA demands fewer MACs with the best performance.

Conclusion

Summary

-In video summarization, considering temporal and spatial attention is necessary.

- -Embracing spatiotemporal attention requires huge resources for better results.
- -For efficient way, we propose CSTA relying on CNN,

having position awareness and efficiency.

Contribution

- 1. This is the first paper to apply 2D CNN to frame features in video summarization.
- 2. Propose CSTA as the efficient spatiotemporal attention algorithm.
- 3. CSTA shows the best results based on the overall performance.

Thank You!

For more details,

Poster 20/06/2024 THU 17:00 - 19:00

Paper:

https://arxiv.org/abs/2405.11905

Code:

https://github.com/thswodnjs3/CSTA