Temporally Consistent Unbalanced Optimal Transport for Unsupervised Action Segmentation

Ming Xu Stephen Gould

Australian **National University**

Temporal Action Segmentation (TAS)

- \triangleright 1D (temporal) segmentation task
- \triangleright Assign video *frames* to one of K action classes.

Figure courtesy Kumar et al., 2022

Ground Truth

Long-form: can be several minutes long Ø *Multi-stage* assembly/instructional videos

Example: Instructional video of CPR

Unsupervised Learning: Simultaneous Learning and Clustering

Jointly learn *representations* and *labels* from a dataset.

- \triangleright Alternate between label generation and learning.
- Ø *Interpretation:* clustering as auxiliary task.

Example: Image Classification

Example: DeepClustering (Caron et al., 2018)

Figure courtesy Caron et al., 2018

\triangleright K-means clustering to learned representations

Example: Image Classification

Example: DeepClustering (Caron et al., 2018)

- \triangleright K-means clustering to learned representations
- \triangleright Cluster assignments become pseudo-labels

Example: Image Classification

Example: SeLA (Asano et al., 2020)

Ø **Idea:** Use *optimal transport (OT)* for label generation!

For N training images and K clusters/classes, solve

$$
\begin{array}{ll}\text{minimize} & \langle \mathbf{C}, \mathbf{T} \rangle, \\ \mathbf{T} \in \mathbb{R}_{+}^{N \times K} \\ \text{subject to} & \mathbf{T} \mathbf{1}_{K} = \frac{1}{N} \mathbf{1}_{N}, \\ & \mathbf{T}^{\top} \mathbf{1}_{N} = \frac{1}{K} \mathbf{1}_{K}, \end{array}
$$

Label assignment cost

For N training images and K clusters/classes, solve

$$
\begin{array}{ll}\text{minimize} \\ \mathbf{T} \in \mathbb{R}_{+}^{N \times K} \\ \text{subject to} & \mathbf{T} \mathbf{1}_{K} = \frac{1}{N} \mathbf{1}_{N}, \\ & \mathbf{T}^{\top} \mathbf{1}_{N} = \frac{1}{K} \mathbf{1}_{K}, \end{array}
$$

Label assignment cost, e.g., negative of the logits from the FC layer.

For N training images and K clusters/classes, solve

$$
\begin{array}{ll}\text{minimize} & \langle \mathbf{C}, \mathbf{T} \rangle, \\ \text{T} \in \mathbb{R}_{+}^{N \times K} \\ \text{subject to} & \begin{bmatrix} \mathbf{T} \mathbf{1}_{K} = \frac{1}{N} \mathbf{1}_{N}, \\ \mathbf{T}^{\top} \mathbf{1}_{N} = \frac{1}{K} \mathbf{1}_{K}, \end{bmatrix} \end{array}
$$

Balanced assignment / equipartition constraint

For N training images and K clusters/classes, solve

minimize
\n
$$
\mathbf{T} \in \mathbb{R}_+^{N \times K}
$$
\nsubject to
\n
$$
\mathbf{T} \mathbf{1}_K = \frac{1}{N} \mathbf{1}_N,
$$
\n
$$
\mathbf{T} \mathbf{T}_N = \frac{1}{K} \mathbf{1}_K,
$$

All images must be labelled

For N training images and K clusters/classes, solve

minimize
$$
\langle \mathbf{C}, \mathbf{T} \rangle
$$
,
\n $\mathbf{T} \in \mathbb{R}_+^{N \times K}$
\nsubject to $\mathbf{T} \mathbf{1}_K = \frac{1}{N} \mathbf{1}_K$,
\n $\mathbf{T}^{\top} \mathbf{1}_N = \frac{1}{K} \mathbf{1}_K$,

Pseudo-labels must be evenly spread across clusters, i.e., N/K **labels per cluster**

For N training images and K clusters/classes, solve

minimize
$$
\langle \mathbf{C}, \mathbf{T} \rangle
$$
,
\n $\mathbf{T} \in \mathbb{R}_+^{N \times K}$
\nsubject to $\mathbf{T} \mathbf{1}_K = \frac{1}{N} \mathbf{1}_K$,
\n $\mathbf{T}^{\top} \mathbf{1}_N = \frac{1}{K} \mathbf{1}_K$,

Pseudo-labels must be evenly spread across clusters, prevents collapse!

Works well for *image classification* datasets with

- Ø *unstructured* image collections and,
- Ø *balanced* ground truth class annotations

Remark: Sinkhorn-Knopp for entropy regularised OT

- \triangleright $O(NK)$ complexity per iteration
- \triangleright Amenable to GPU computation (few lines of PyTorch)
- \triangleright Fast convergence in practice

Does This Work for Temporal Action Segmentation?

Isn't This Just an Image Dataset?

We still have a collection of images... what has changed?

"Standard" optimal transport has **no understanding of structure**!

Isn't This Just an Image Dataset?

We still have a collection of images... what has changed?

Unordered Image **Collection**

Image Classification

Temporal Action Segmentation

i.e., temporal consistency!

Long-tail Class Distributions

e.g., Breakfast dataset

Figure courtesy Ding et al., 20231

Difficult to curate balanced classes

1Ding et al. Temporal Action Segmentation: An Analysis of Modern Techniques. IEEE TPAMI, 2023.

Standard Optimal Transport for Videos: Let's Try!

Label assignment costs (C) CONDOCT DECOMBED CONSERVING CONTROLLER (T)

1000 2000 3000 4000 5000 Ω uster Index 2 Frame Index

\triangleright Temporal consistency

Long-tail class distribution

A Regularisation Approach

Kumar et al. Unsupervised Action Segmentation by Joint Representation Learning and Online Clustering. CVPR 2022

Ming Xu and Stephen Gould. Temporally Consistent Unbalanced Optimal Transport for Unsupervised Action Segmentation 22

A Regularisation Approach

 \triangleright Temporal consistency

\triangleright Long-tail class distribution

A Regularisation Approach

Also assumes actions always *occur in the same order*!

Core Methodology

Our Approach: Use *Non*-standard OT!

Avoid "standard" OT, use *structured optimal transport*.

We use an *unbalanced*, *fused Gromov-Wasserstein* formulation

- \triangleright Temporal consistency
- \triangleright Long-tail class distributions

Our Approach: Use *Non*-standard OT!

Avoid "standard" OT, use *structured optimal transport*.

We use an *unbalanced*, *fused Gromov-Wasserstein* formulation

- Ø Temporal consistency → **Gromov-Wasserstein**
- Ø Long-tail class distributions → **unbalanced transport**

Gromov-Wasserstein for Encoding Structural Priors

A (relatively) general formulation for (discrete) GW problems:

$$
\begin{array}{ll}\n\text{minimize} & \sum_{i,k \in [N]} L(C_{ik}^v, C_{jl}^a) T_{ij} T_{kl}, \\
\text{ } & \text{ } \mathbf{T} \in \mathbb{R}_+^{N \times K} \\
\text{s.t.} & \mathbf{T} \mathbf{1}_K = \frac{1}{N} \mathbf{1}_N, \\
\mathbf{T}^\top \mathbf{1}_N = \frac{1}{K} \mathbf{1}_K,\n\end{array}
$$

 \triangleright Cost matrices $C^v \in \mathbb{R}^{N \times N}$ and $C^a \in \mathbb{R}^{K \times K}$

"Loss" function between cost matrix elements $L: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$

Gromov-Wasserstein for Encoding Structural Priors

A (relatively) general formulation for (discrete) GW problems:

$$
\begin{array}{ll}\n\text{minimize} & \sum_{i,k \in [N]} L(C_{ik}^v, C_{jl}^a) T_{ij} T_{kl}, \\
\text{ } & \text{ } \mathbf{T} \in \mathbb{R}_+^{N \times K} \\
\text{s.t.} & \mathbf{T} \mathbf{1}_K = \frac{1}{N} \mathbf{1}_N, \\
\mathbf{T}^\top \mathbf{1}_N = \frac{1}{K} \mathbf{1}_K,\n\end{array}
$$

Ø *Quadratic* instead of linear objective (non-convex)

Ø *Quadratic* term allows us to encode **structural priors**

Gromov-Wasserstein for Encoding Structural Priors

Cluster index

For a **single video** with N frames and K action classes,

Intuition: Labelling adjacent frames to different clusters incurs a cost

Effect of the Structural Prior

From this….

Effect of the Structural Prior

to this!

\triangleright Labels are still balanced however...

Unbalanced Transport for Long-tail Class Distributions

For standard optimal transport, **replace constraints…**

Unbalanced Transport for Long-tail Class Distributions

For standard optimal transport, **with a penalty!**

$$
\begin{array}{ll}\text{minimize} & \langle \mathbf{C}, \mathbf{T} \rangle + \lambda \mathsf{D}_{\mathsf{KL}} (\mathbf{T}^{\top} \mathbf{1}_{N} || \frac{1}{K} \mathbf{1}_{K}), \\ \text{subject to} & \mathbf{T} \mathbf{1}_{K} = \frac{1}{N} \mathbf{1}_{N} \end{array}
$$

Adapt parameter $\lambda > 0$ to reflect the level of class imbalance

Ø We use the KL-divergence, but **other options are possible**

Unbalanced Transport for Long-tail Class Distributions

 \triangleright Long-tail class distribution

Action Segmentation Optimal Transport (ASOT)

Our final, ASOT formulation solves the problem

$$
\begin{array}{ll}\n & \text{temp. consist.} \quad \text{learned repn.} \\\n & \text{imp. consist.} \\\n & \text{map. } \\\n & \text{map. }
$$

where $\alpha \in [0,1]$ is the relative weighting of the structure term

Unbalanced, fused Gromov-Wasserstein problem!

Action Segmentation Optimal Transport (ASOT)

Our final, ASOT formulation solves the problem

temp. consist.	learned repn.	long-tail class distn.	
minimize	$\alpha \langle \mathbf{C}^v \mathbf{T} \mathbf{C}^a, \mathbf{T} \rangle$	$(1 - \alpha) \langle \mathbf{C}, \mathbf{T} \rangle$	$\lambda \mathbf{D}_{\mathsf{KL}} (\mathbf{T}^\top \mathbf{1}_N \frac{1}{K} \mathbf{1}_K),$
subject to	$\mathbf{T} \mathbf{1}_K = \frac{1}{N} \mathbf{1}_N$		

where $\alpha \in [0,1]$ is the relative weighting of the structure term

Unbalanced, fused *Gromov-Wasserstein* problem!

ASOT is Efficient

ASOT is solved using *projected mirror descent*

- \triangleright Each iteration has complexity $O(NK)$
- \triangleright Still amenable to GPUs (and simple PyTorch code)
- \triangleright **24.1ms** for $N = 16k$ frames (~9 mins of video) and $K = 19$ classes on single RTX 4090

Experimental Results

Unsupervised Temporal Action Segmentation: Training Pipeline

- \triangleright Raw data is frame features, not images
- Simple MLP frame feature encoder (random init.)
- Pseudo-labels generated "online", i.e., per batch

Australian National Universitv

State-of-the-art Comparison

Metrics: Mean-over-frames accuracy (MoF), segmental F1 score (F1), framewise mean intersection-over-union (mIoU)

Table: State-of-the-art comparison results. For all evaluation metrics, higher is better.

Ø **6-26%** improvements to MoF accuracy compared to SOTA

1Kukleva et al. Unsupervised Learning of Action Classes With Continuous Temporal Embedding. CVPR 2019. 2Kumar et al. Unsupervised Action Segmentation by Joint Representation Learning and Online Clustering. CVPR 2022 3Tran et al. Permutation-Aware Action Segmentation via Unsupervised Frame-to-Segment Alignment. WACV 2024

State-of-the-art Comparison

Metrics: Mean-over-frames accuracy (MoF), segmental F1 score (F1), framewise mean intersection-over-union (mIoU)

Table: State-of-the-art comparison results. For all evaluation metrics, higher is better.

Ø UFSA and TOT use (standard) optimal transport

1Kukleva et al. Unsupervised Learning of Action Classes With Continuous Temporal Embedding. CVPR 2019. 2Kumar et al. Unsupervised Action Segmentation by Joint Representation Learning and Online Clustering. CVPR 2022 3Tran et al. Permutation-Aware Action Segmentation via Unsupervised Frame-to-Segment Alignment. WACV 2024

State-of-the-art Comparison

Metrics: Mean-over-frames accuracy (MoF), segmental F1 score (F1), framewise mean intersection-over-union (mIoU)

Table: State-of-the-art comparison results. For all evaluation metrics, higher is better.

\triangleright UFSA has a complex, multi-stage transformer architecture

1Kukleva et al. Unsupervised Learning of Action Classes With Continuous Temporal Embedding. CVPR 2019. 2Kumar et al. Unsupervised Action Segmentation by Joint Representation Learning and Online Clustering. CVPR 2022 3Tran et al. Permutation-Aware Action Segmentation via Unsupervised Frame-to-Segment Alignment. WACV 2024

Unsupervised Temporal Action Segmentation: Ablation Study

Table: Ablation study results, effects are not additive.

Unsupervised Temporal Action Segmentation: Ablation Study

Table: Ablation study results, effects are not additive.

 \triangleright Unbalanced transport important with dominant action classes (Breakfast vs Desktop Assembly)

Unsupervised Temporal Action Segmentation: Ablation Study

Table: Ablation study results, effects are not additive.

 \triangleright Structural prior is important across the board

Qualitative Examples

Order variations and repeated actions!

Breakfast Desktop Assembly

Discussion and Future Work

Ming Xu and Stephen Gould. Temporally Consistent Unbalanced Optimal Transport for Unsupervised Action Segmentation 50

Broader Impact: Other Settings

Pseudo-labels are ubiquitous

 \triangleright Semi/weakly-supervised learning (and other variants)

 \triangleright Unsupervised domain adaptation

Broader Impact: Other Applications

Image segmentation Monocular depth

Figure courtesy Kirillov et al., 20191 Figure courtesy Ranftl et al., 20202

1Kirillov et al. Panoptic Segmentation. CVPR 2019. 2Ranftl et al. Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer. PAMI 2020.

Broader Impact: Other Applications

Local feature extractors/matchers

Figure courtesy Yi et al., 2016

Yi et al. LIFT: Learned Invariant Feature Transform. ECCV 2016.

Theoretical Understanding

Recent theoretical developments for self-training (ICLR 2021)

Published as a conference paper at ICLR 2021

THEORETICAL ANALYSIS OF SELF-TRAINING WITH **DEEP NETWORKS ON UNLABELED DATA**

Colin Wei & Kendrick Shen & Yining Chen & Tengyu Ma Department of Computer Science **Stanford University** Stanford, CA 94305, USA {colinwei, kshen6, cynnjjs, tengyuma}@stanford.edu

ABSTRACT

Self-training algorithms, which train a model to fit pseudolabels predicted by another previously-learned model, have been very successful for learning with unlabeled data using neural networks. However, the current theoretical understanding of self-training only applies to linear models. This work provides a unified theo-

How does OT (and ASOT) pseudo-labelling fit into this framework?

Thank You!

Poster Session 4 Arch 4A-E @ 5:00 p.m. -6:30 p.m. Poster #400

Link to paper!

