



## Adversarially Robust Few-shot Learning via Parameter Co-distillation of Similarity and Class Concept Learners

Junhao Dong, Piotr Koniusz, Junxi Chen, Xiaohua Xie, Yew-Soon Ong

Reporter: Junhao Dong

**Adversarial examples** are tailored inputs with the purpose of confusing neural networks. (Visually similar to natural examples)



Introducing gradient ascent at the image level.

## **Adversarial Training (min-max optimization):**

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}} \left[ \mathcal{L}_{CE} \left( f_{\boldsymbol{\theta}} \left( \mathbf{x} \right), y \right) + \max_{\|\boldsymbol{\delta}\|_{\infty} < \epsilon} \mathcal{L}_{KL} \left( f_{\boldsymbol{\theta}} \left( \mathbf{x} \right) \| f_{\boldsymbol{\theta}} \left( \mathbf{x} + \boldsymbol{\delta} \right) \right) \right]$$











#### Similarity learning vs. Class Concept Learning for Robustness

Similarity Learning:

$$oldsymbol{\mu}_n = rac{1}{|\mathcal{S}_n|} \sum_{(\mathbf{x},y)\in\mathcal{S}_n} f_{oldsymbol{ heta}_s}(\mathbf{x})$$
 Class-wise feature mean prototypes

$$p(y_{\mathbf{x}} = y_{\boldsymbol{\mu}_n} | \mathbf{x}, \mathbf{M}) = \frac{\exp(-d^2(f_{\boldsymbol{\theta}_s}(\mathbf{x}), \boldsymbol{\mu}_n))}{\sum_{n'=1}^{N} \exp(-d^2(f_{\boldsymbol{\theta}_s}(\mathbf{x}), \boldsymbol{\mu}_{n'}))}$$

Learning object relations between support and query sets

#### 1 Background

### Similarity learning vs. Class Concept Learning for Robustness

### Similarity Learning:

 $\boldsymbol{\mu}_n = \frac{1}{|\mathcal{S}_n|} \sum_{(\mathbf{x}, y) \in \mathcal{S}_n} f_{\boldsymbol{\theta}_s}(\mathbf{x}) \xrightarrow{\text{Class-wise feature}}_{\text{mean prototypes}}$ 

$$p(y_{\mathbf{x}} = y_{\boldsymbol{\mu}_n} | \mathbf{x}, \mathbf{M}) = \frac{\exp(-d^2(f_{\boldsymbol{\theta}_s}(\mathbf{x}), \boldsymbol{\mu}_n))}{\sum_{n'=1}^{N} \exp(-d^2(f_{\boldsymbol{\theta}_s}(\mathbf{x}), \boldsymbol{\mu}_{n'}))}$$

Learning object relations between support and query sets

Concept Learning: Softmax with learnable weights  $\mathbf{W} = \{\mathbf{w}_z\}_{z=1}^Z$ 

$$p(y_{\mathbf{x}} = z | \mathbf{x}, \mathbf{W}) = \frac{\exp(\mathbf{w}_{z}^{\top} f_{\boldsymbol{\theta}_{c}}(\mathbf{x}))}{\sum_{z'=1}^{Z} \exp(\exp(\mathbf{w}_{z'}^{\top} f_{\boldsymbol{\theta}_{c}}(\mathbf{x})))}$$

Learning global classifier weights for all the classes



### Analyses on Similarity and Class Concept Learning



Analyses on Similarity and Class Concept Learning



Adversarially Robust Few-shot Learning via Parameter Co-distillation of Similarity and Class Concept Learners

#### 2 Method

paRametEr co-diStIllation of SimilariTy and clAss coNCept IEarners (RESISTANCE):



**Dynamic Parameter-level Interpolation:** 

$$\boldsymbol{\theta}_{u} := \beta \boldsymbol{\theta}_{u} + (1 - \beta) \left[ \gamma \boldsymbol{\theta}_{s} + (1 - \gamma) \boldsymbol{\theta}_{c} \right]$$

#### 2 Method

paRametEr co-diStIllation of SimilariTy and clAss coNCept IEarners (RESISTANCE):



Cross-branch Class-wise Global Adversarial Initialization Perturbations:

$$\mu_z^{(g)} = rac{1}{|\mathcal{B}_z|} \sum_{(\mathbf{x},y) \in \mathcal{B}_z} g(\mathbf{x})$$
 Class-Wise Prototype

**Cross-Branch Disruption** 

$$\mathcal{L}_{\text{GAIP}}(\mathcal{B}_{z};\boldsymbol{\delta}_{0}^{z}) = \sum_{\mathbf{x}^{z} \in \mathcal{B}_{z}} \sum_{\substack{g \in \{f_{\boldsymbol{\theta}_{s}}, \\ f_{\boldsymbol{\theta}_{c}}, f_{\boldsymbol{\theta}_{u}}\}}} \left\| g(\mathbf{x}^{z} + \boldsymbol{\delta}_{0}^{z}) - \boldsymbol{\mu}_{z}^{(g)} \right\|_{2}^{2}$$

Iterative Perturbing

$$\boldsymbol{\delta}_{0}^{z(\iota)} = h\left(\mathcal{B}_{z}^{\iota}; \boldsymbol{\delta}_{0}^{z(\iota-1)}; \alpha\right) = \\ \Pi_{\mathbb{B}(\epsilon)} \left(\boldsymbol{\delta}_{0}^{z(\iota-1)} + \alpha \operatorname{sign}\left(\nabla_{\boldsymbol{\delta}_{0}^{z(\iota-1)}}\mathcal{L}_{\mathrm{GAIP}}^{z}\left(\mathcal{B}_{z}^{\iota}; \boldsymbol{\delta}_{0}^{z(\iota-1)}\right)\right)\right)$$

#### 2 Method

paRametEr co-diStIllation of SimilariTy and clAss coNCept IEarners (RESISTANCE):



### Branch Robustness Harmonization:

**Relative Robustness Score** 

$$\kappa_{s}(\mathcal{Q}, \mathcal{S}) = \frac{\mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{Q}} \left[ \mathcal{L}_{\mathrm{KL}} \left( \mathbf{p}_{\mathbf{x}}^{\mathbf{W}} \| \mathbf{p}_{\mathbf{x} + \boldsymbol{\delta}_{c}^{\mathbf{x}}}^{\mathbf{W}} \right) \right]}{\mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{Q}} \left[ \mathcal{L}_{\mathrm{KL}} \left( \mathbf{p}_{\mathbf{x}}^{\mathbf{M}(\mathcal{S})} \| \mathbf{p}_{\mathbf{x} + \boldsymbol{\delta}_{s}^{\mathbf{x}}}^{\mathbf{M}(\mathcal{S})} \right) \right]}$$

#### **Reweighted Learning Rate**

$$\eta'_{s} = \eta_{s} \left[ 1 - \tanh\left(\tau \max\left(0, \log\left(\kappa_{s}\right)\right)\right) \right]$$

## **Standard Comparison:**

| Model     | Method            | Mini-ImageNet |              |              | CIFAR-FS     |              |              | FC100        |              |              |              |              |              |
|-----------|-------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 11000     |                   | Clean         | PGD          | CW           | AA           | Clean        | PGD          | CW           | AA           | Clean        | PGD          | CW           | AA           |
| Conv-4    | AQ [14]           | 50.12         | 28.16        | 27.21        | 24.68        | 57.63        | 39.58        | 38.69        | 37.17        | 35.19        | 24.76        | 22.80        | 21.08        |
|           | R-MAML [38]       | 50.76         | 34.19        | 29.61        | 28.31        | 52.75        | 32.66        | 31.47        | 19.25        | 38.56        | 17.67        | 15.91        | 18.75        |
|           | ST [30]           | 51.23         | 33.23        | 30.84        | 29.07        | 55.61        | 40.21        | 40.15        | 39.95        | 40.69        | 30.65        | 27.39        | 27.06        |
|           | GR [9]            | 50.93         | 37.95        | 35.90        | 31.37        | 58.31        | 47.95        | 46.45        | 45.09        | 41.32        | 32.92        | 30.70        | 29.09        |
|           | DFSL [18]         | 51.10         | 36.23        | 35.94        | 30.31        | 58.89        | 47.42        | 46.62        | 44.38        | 41.74        | 31.81        | 29.99        | 28.44        |
|           | <b>RESISTANCE</b> | <b>52.23</b>  | <b>40.24</b> | <b>38.55</b> | <b>35.81</b> | <b>60.05</b> | <b>48.37</b> | <b>47.00</b> | <b>45.89</b> | <b>44.63</b> | <b>35.15</b> | <b>33.73</b> | <b>30.07</b> |
| ResNet-12 | AQ [14]           | 64.47         | 30.80        | 29.62        | 25.72        | 65.78        | 44.01        | 42.54        | 41.56        | 41.07        | 25.68        | 24.86        | 22.13        |
|           | R-MAML [38]       | 62.75         | 45.78        | 43.88        | 36.12        | 65.61        | 34.77        | 33.15        | 27.77        | 42.25        | 24.39        | 20.49        | 20.08        |
|           | ST [30]           | 61.65         | 47.85        | 45.98        | 45.23        | 64.44        | 46.16        | 44.26        | 43.19        | 44.57        | 32.18        | 30.72        | 28.33        |
|           | GR [9]            | 64.60         | 50.71        | 47.52        | 47.59        | 66.99        | 52.66        | 50.61        | 50.91        | 46.12        | 34.27        | 32.00        | 30.98        |
|           | DFSL [18]         | 64.95         | 50.83        | 47.23        | 46.50        | 65.84        | 53.90        | 51.25        | 50.64        | 47.73        | 34.63        | 32.36        | 30.97        |
|           | <b>RESISTANCE</b> | <b>68.79</b>  | <b>53.84</b> | <b>51.47</b> | <b>50.52</b> | <b>74.83</b> | <b>61.61</b> | <b>59.64</b> | <b>58.76</b> | <b>51.69</b> | <b>37.51</b> | <b>35.70</b> | <b>34.66</b> |

#### Robustness w.r.t. diverse attack radii:

| Radius $\epsilon$ | Method      | Mini-In | nageNet | CIFAR-FS                                                                                                                                                                                                                                                                                                                                                                                        |        |  |
|-------------------|-------------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| Ruurus e          | Wethod      | 1-shot  | 5-shot  | 1-shot                                                                                                                                                                                                                                                                                                                                                                                          | 5-shot |  |
|                   | R-MAML [38] | 31.67   | 47.21   | 30.96                                                                                                                                                                                                                                                                                                                                                                                           | 40.43  |  |
| 11255             | GR [9]      | 35.77   | 52.63   | 40.04                                                                                                                                                                                                                                                                                                                                                                                           | 55.82  |  |
| 4/255             | DFSL [18]   | 36.39   | 53.45   | 41.12                                                                                                                                                                                                                                                                                                                                                                                           | 56.92  |  |
|                   | RESISTANCE  | 39.24   | 58.57   | CIFAR-FS1-shot5-shot30.9640.4340.0455.8241.1256.9246.0764.1827.1634.9136.8552.9837.4553.2043.3961.3522.8126.1233.2348.4732.9848.0338.5756.1821.3025.0631.1447.4629.1945.6636.0152.35                                                                                                                                                                                                            |        |  |
|                   | R-MAML [38] | 28.65   | 42.94   | 27.16                                                                                                                                                                                                                                                                                                                                                                                           | 34.91  |  |
| 61255             | GR [9]      | 33.75   | 50.95   | 36.85                                                                                                                                                                                                                                                                                                                                                                                           | 52.98  |  |
| 0/255             | DFSL [18]   | 33.98   | 50.42   | 37.45                                                                                                                                                                                                                                                                                                                                                                                           | 53.20  |  |
|                   | RESISTANCE  | 37.06   | 54.85   | CIFAR-I         1-shot       5-         30.96       4         40.04       5         41.12       5         46.07       6         27.16       3         36.85       5         37.45       5         43.39       6         22.81       2         33.23       4         32.98       4         38.57       5         21.30       2         31.14       4         29.19       4         36.01       5 | 61.35  |  |
|                   | R-MAML [38] | 25.08   | 35.73   | 22.81                                                                                                                                                                                                                                                                                                                                                                                           | 26.12  |  |
| 10/255            | GR [9]      | 28.01   | 44.99   | 33.23                                                                                                                                                                                                                                                                                                                                                                                           | 48.47  |  |
| 10/233            | DFSL [18]   | 26.83   | 43.08   | 32.98                                                                                                                                                                                                                                                                                                                                                                                           | 48.03  |  |
|                   | RESISTANCE  | 29.76   | 47.33   | 38.57                                                                                                                                                                                                                                                                                                                                                                                           | 56.18  |  |
|                   | R-MAML [38] | 23.89   | 32.75   | 21.30                                                                                                                                                                                                                                                                                                                                                                                           | 25.06  |  |
| 12/255            | GR [9]      | 26.31   | 40.92   | 31.14                                                                                                                                                                                                                                                                                                                                                                                           | 47.46  |  |
| 12/233            | DFSL [18]   | 25.27   | 38.69   | 29.19                                                                                                                                                                                                                                                                                                                                                                                           | 45.66  |  |
|                   | RESISTANCE  | 27.65   | 44.10   | 36.01                                                                                                                                                                                                                                                                                                                                                                                           | 52.35  |  |

#### Single-step Extension (Efficiency):

| Method      | Adversary Type   | 1-:   | shot   | 5-    | Time(h) |          |
|-------------|------------------|-------|--------|-------|---------|----------|
| method      | The versary Type | Clean | Robust | Clean | Robust  | Time(II) |
| R-MAML [38] | Multi-step       | 37.52 | 24.14  | 62.75 | 36.12   | 15.6     |
|             | N-FGSM [7]       | 33.61 | 21.27  | 59.72 | 34.53   | 4.8      |
|             | RS-FGSM [40]     | 33.86 | 21.22  | 59.85 | 34.48   | 4.8      |
|             | GradAlign [1]    | 34.04 | 21.46  | 60.50 | 34.93   | 8.3      |
| GR [9]      | Multi-step       | 45.81 | 32.61  | 64.60 | 47.59   | 10.7     |
|             | N-FGSM [7]       | 40.13 | 28.17  | 59.44 | 44.71   | 3.1      |
|             | RS-FGSM [40]     | 41.49 | 26.35  | 60.57 | 43.24   | 3.1      |
|             | GradAlign [1]    | 40.63 | 27.42  | 59.15 | 44.03   | 5.9      |
| RESISTANCE  | Multi-step       | 50.28 | 33.71  | 68.79 | 50.52   | 16.9     |
|             | N-FGSM [7]       | 48.84 | 32.70  | 68.40 | 50.35   | 5.3      |
|             | RS-FGSM [40]     | 49.24 | 30.26  | 67.81 | 48.70   | 5.3      |
|             | GradAlign [1]    | 49.07 | 31.33  | 68.48 | 49.19   | 9.5      |

#### **Cross-domain robustness**

| Transfer                            | Method     |       | 1-shot |       | 5-shot |       |       |
|-------------------------------------|------------|-------|--------|-------|--------|-------|-------|
| 11 unio 101                         |            | Clean | PGD    | AA    | Clean  | PGD   | AA    |
|                                     | AQ [14]    | 43.96 | 26.36  | 22.30 | 61.05  | 37.33 | 30.97 |
|                                     | GR [9]     | 44.13 | 34.67  | 32.13 | 60.86  | 45.17 | 42.03 |
| $\mathbf{M} \rightarrow \mathbf{C}$ | TROBĂ [17] | 43.20 | 32.47  | 30.81 | 62.44  | 46.24 | 43.75 |
|                                     | RESISTANCE | 48.04 | 38.65  | 36.54 | 64.13  | 53.42 | 50.26 |
|                                     | AQ [14]    | 36.08 | 18.71  | 14.14 | 47.66  | 25.31 | 19.45 |
|                                     | GR [9]     | 35.16 | 26.40  | 24.30 | 45.91  | 33.92 | 30.79 |
| $\mathbf{M} \to \mathbf{F}$         | TROBĂ [17] | 34.09 | 24.42  | 21.65 | 45.51  | 34.05 | 31.56 |
|                                     | RESISTANCE | 35.78 | 27.63  | 24.34 | 47.88  | 37.49 | 35.45 |
|                                     | AQ [14]    | 36.25 | 11.15  | 8.80  | 56.90  | 19.10 | 14.20 |
|                                     | GR [9]     | 36.65 | 24.60  | 20.12 | 50.73  | 33.19 | 30.17 |
| $\mathbf{C} \rightarrow \mathbf{M}$ | TROBĂ [17] | 37.48 | 21.59  | 18.40 | 52.46  | 29.27 | 26.92 |
|                                     | RESISTANCE | 38.55 | 25.08  | 21.65 | 56.04  | 39.19 | 34.96 |

#### Ablations:

#### Impact of each module

| (                                                   | Co-dist.                     | GAIP         | Harm.        | Clean                            | PGD-20                           | AA                               |
|-----------------------------------------------------|------------------------------|--------------|--------------|----------------------------------|----------------------------------|----------------------------------|
| $ \begin{array}{c c} 1 \\ 2 \\ 3 \\ 4 \end{array} $ | $\checkmark$<br>$\checkmark$ | $\checkmark$ | $\checkmark$ | 60.22<br>68.12<br>73.17<br>71.46 | 46.95<br>55.14<br>58.99<br>60.24 | 45.84<br>53.07<br>55.72<br>56.20 |
| 5                                                   | $\checkmark$                 | $\checkmark$ | $\checkmark$ | 74.83                            | 61.61                            | 58.76                            |

#### **Diverse Co-distillation Components**

| Co-distillation Components    | 1-9   | shot   | 5-shot |        |  |
|-------------------------------|-------|--------|--------|--------|--|
| eo distilución components     | Clean | Robust | Clean  | Robust |  |
| similarity & similarity       | 49.50 | 31.75  | 69.63  | 46.33  |  |
| class concept & class concept | 47.90 | 33.04  | 67.37  | 51.17  |  |
| similarity & class concept    | 55.78 | 41.57  | 74.83  | 58.76  |  |

#### 3 Experiments & Analyses



#### Adversarially Robust Few-shot Learning via Parameter Co-distillation of Similarity and Class Concept Learners

#### 14

## Contributions:

- By analyzing the complementary nature of visual similarity and class concept learning distinguished by their unique label spaces, we propose a novel adversarially robust few-shot learning framework based on a simple but effective parameter co-distillation mechanism, improving robustness across diverse attack strengths.
- To promote the uniformity of robustness across learners, we introduce **cross-branch class-wise adversarial perturbations** for branch-specific adversary initialization. We also propose a **robustness harmonization** module to modulate the optimization of diverse branches.
- Comprehensive experiments demonstrate the effectiveness and generalization ability of RESISTANCE compared to the state-of-the-art adversarially robust fewshot learning approaches.
   In addition, we investigate the scalability of RESISTANCE with the single-step adversary generation strategies for better efficiency.





# Thank you!

## Adversarially Robust Few-shot Learning via Parameter Co-distillation of Similarity and Class Concept Learners

Junhao Dong, Piotr Koniusz, Junxi Chen, Xiaohua Xie, Yew-Soon Ong

Reporter: Junhao Dong