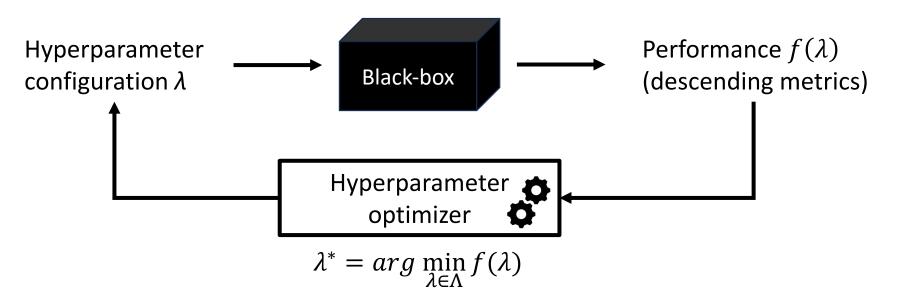


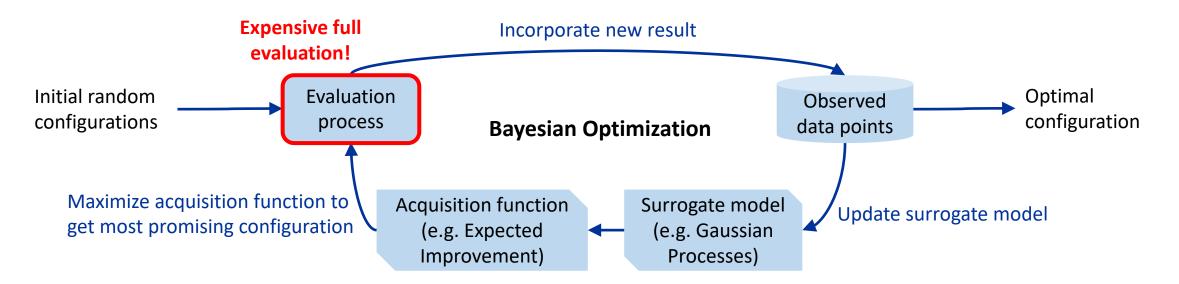
Efficient Hyperparameter Optimization with Adaptive Fidelity Identification

Jiantong Jiang¹, Zeyi Wen^{2,3}, Atif Mansoor¹, Ajmal Mian¹ ¹ The University of Western Australia ² Hong Kong University of Science and Technology (Guangzhou) ³ Hong Kong University of Science and Technology

- The performance of machine learning models strongly depends on the choice of **hyperparameters**.
- Hyperparameter Optimization (HPO): automatically find hyperparameters or architectures that yield SOTA performance.

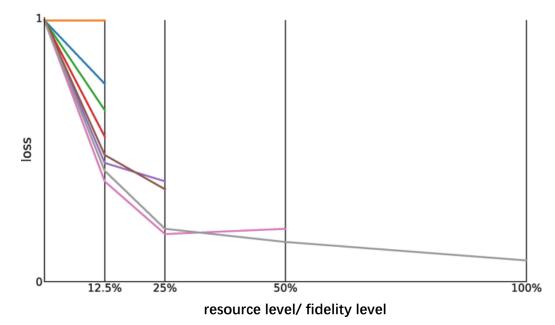


- Crucial HPO directions: model-based methods, multi-fidelity methods.
- Model-based methods: follow Bayesian optimization (BO) framework.



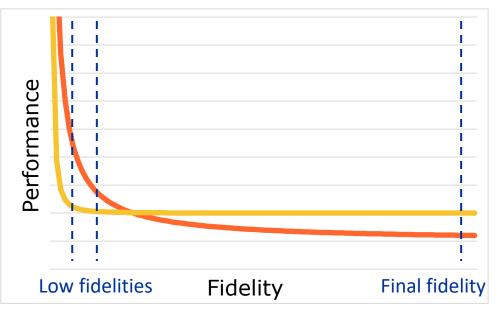
• Major limitation: require expensive full evaluation of each configuration to get its final (highest) fidelity performance.

- Crucial HPO directions: model-based methods, multi-fidelity methods.
- **Multi-fidelity methods**: consider performance at different resource levels (fidelities); follow successive halving (<u>SHA</u>) framework.



• Major limitation: use a simple random configuration search.

- Combining model-based and multi-fidelity methods: replace the random sampling in SHA with BO.
 - Issue: learning curves of different configurations can intersect.
 - Limitation: early performance got through fixed low fidelities (e.g. 1, 2, 4, 8, ...) cannot always indicate high-fidelity performance.

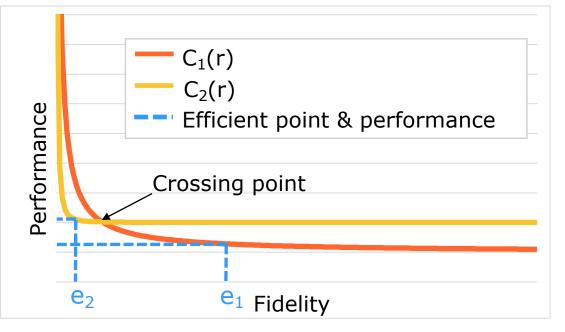


Challenge: What is the appropriate fidelity for each configuration to fit the surrogate model?

6

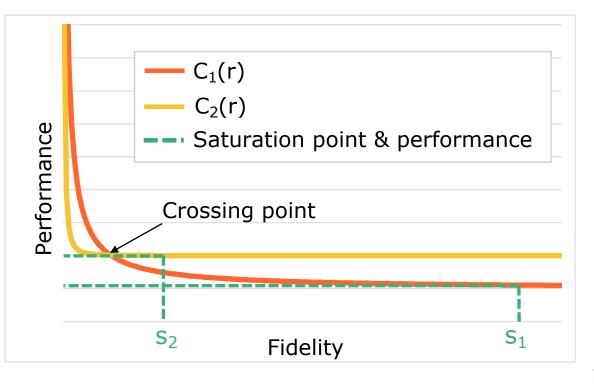
- "Efficient point": $e_i = \min\{r | C_i(r) C_i(2r) < \delta_1\}$
 - When resources are doubled (from r to 2r), the performance improvement falls below a small threshold.
 - Get strong performance while still efficiently using resources.
 - Use as the fidelity to fit the surrogate model.

Definition 1 (Efficient point). For a given learning curve $C_i(r)$ of hyperparameter configuration λ_i , where r represents the resource level (also referred to as fidelity), the efficient point e_i of λ_i is defined as: $e_i = \min\{r \mid C_i(r) - C_i(2r) < \delta_1\}$, where δ_1 is a predefined small threshold.

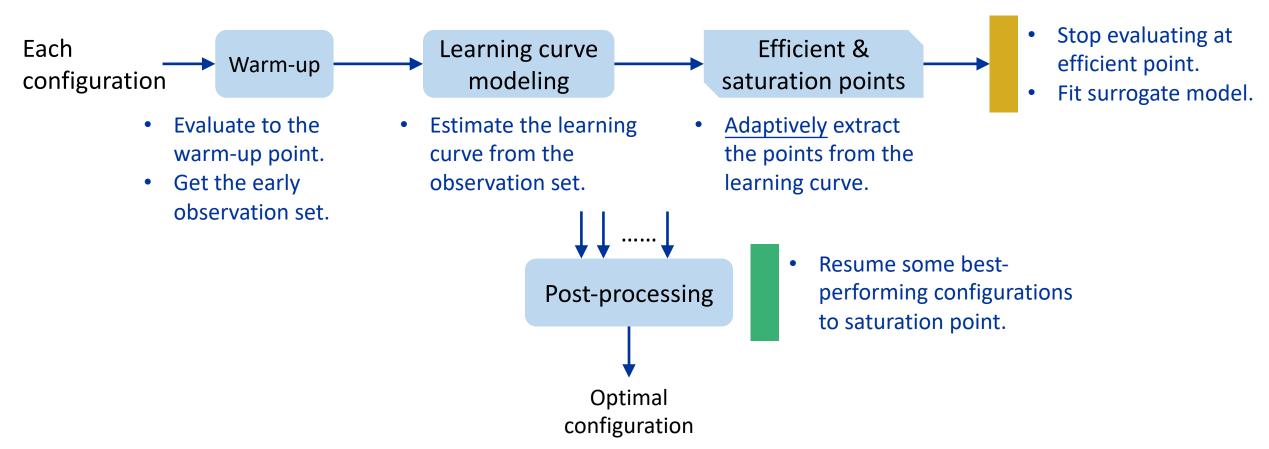


- "Saturation point": $s_i = \min\{r | \forall r' > r, |C_i(r') C_i(r) < \delta_2\}$
 - Performance does not have notable variations with more resources.
 - Use as a final fidelity approximation.

Definition 2 (Saturation point). For a given learning curve $C_i(r)$ of configuration λ_i , where r represents the resource level (also referred to as fidelity), the saturation point s_i of λ_i is defined as: $s_i = \min\{r \mid \forall r' > r, |C_i(r') - C_i(r)| < \delta_2\}$, where δ_2 is a predefined small threshold.



• Process overview



- FastBO can be generalized to any single-fidelity methods.
 - Extend single-fidelity methods to multi-fidelity setting: evaluate each config to the efficient point instead of to the final fidelity.
 - Even model-free methods can be improved by our extension strategy.

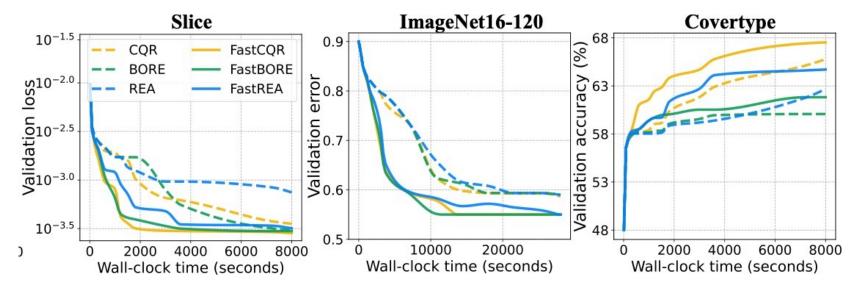


Figure 1. Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants using our extension method.

- Anytime performance
 - FastBO can handle various performance metrics.
 - FastBO gains an advantage earlier than other methods.

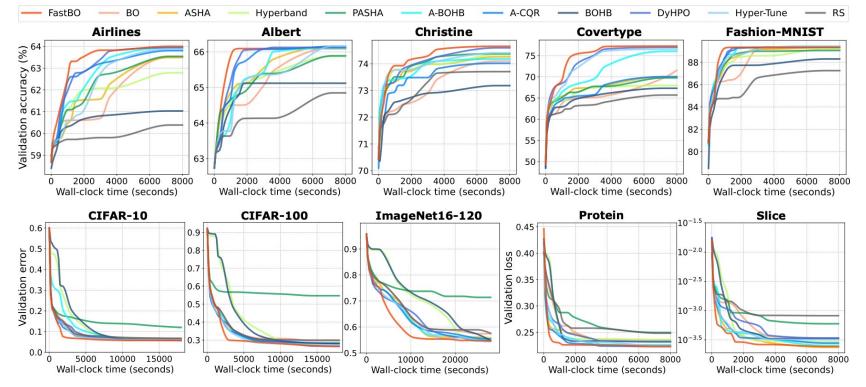


Figure 2. Performance on the LCBench, NAS-Bench-201, and FCNet benchmarks.

- Efficiency on configuration identification
 - FastBO saves 10% to 87% wall-clock time when achieving up to 9.6% better performance values.

Table 2. Comparison of relative efficiency on configuration identification. FastBO is set as the baseline with a relative efficiency of 1.00. Wall-clock time (abbr. WC time) reports the elapsed time spent for each method on finding configurations with similar performance metrics, i.e., validation error ($\times 10^{-2}$) for Covertype and ImageNet16-120 and validation loss ($\times 10^{-5}$) for Slice.

Metric		FastBO	BO	PASHA	A-BOHB	A-CQR	BOHB	DyHPO	Hyper-Tune
Covertype	Val. error WC time (h) Rel. efficiency	$\begin{array}{c} 22.9_{\pm 0.2} \\ 0.7_{\pm 0.3} \\ 1.00 \end{array}$	$\begin{array}{c} 23.0_{\pm 0.3} \\ 2.9_{\pm 0.7} \\ 0.25 \end{array}$	$25.1_{\pm 2.5}$ $3.9_{\pm 1.0}$ 0.18	$23.5_{\pm 1.1}$ $2.0_{\pm 1.0}$ 0.37	$\begin{array}{c} 31.6_{\pm 1.9} \\ 3.9_{\pm 0.2} \\ 0.19 \end{array}$	$\begin{array}{c} 32.5_{\pm 0.8} \\ 2.5_{\pm 1.0} \\ 0.29 \end{array}$	$\begin{array}{c} 23.0_{\pm 0.3} \\ 1.7_{\pm 0.6} \\ 0.41 \end{array}$	$\begin{array}{c} 23.0_{\pm 0.2} \\ 1.8_{\pm 0.7} \\ 0.40 \end{array}$
ImageNet 16-120	Val. error WC time (h) Rel. efficiency	$\begin{array}{c} 55.3_{\pm 0.2} \\ 2.2_{\pm 0.7} \\ 1.00 \end{array}$	$57.4_{\pm 1.2}$ $6.6_{\pm 0.9}$ 0.34	$55.7_{\pm 0.3} \\ 2.5_{\pm 1.2} \\ 0.90$	$\begin{array}{c} 55.8_{\pm 1.6} \\ 5.9_{\pm 1.1} \\ 0.38 \end{array}$	55.5 _{±0.9} 6.0 _{±1.3} 0.37	$55.5_{\pm 1.1}$ $3.2_{\pm 0.7}$ 0.68	$55.5_{\pm 1.0}$ $4.3_{\pm 1.0}$ 0.51	$55.3_{\pm 2.0}$ $3.4_{\pm 1.1}$ 0.67
Slice	Val. loss WC time (h) Rel. efficiency	$\begin{array}{c} 26.3_{\pm 2.6} \\ 0.4_{\pm 0.1} \\ 1.00 \end{array}$	$\begin{array}{c} 26.4_{\pm 4.4} \\ 3.1_{\pm 0.7} \\ 0.13 \end{array}$	$26.8_{\pm 9.5}$ $1.2_{\pm 0.9}$ 0.35	$\begin{array}{c} 26.3_{\pm 6.3} \\ 2.1_{\pm 0.7} \\ 0.20 \end{array}$	$27.1_{\pm 4.2}\\2.5_{\pm 0.7}\\0.17$	$26.8_{\pm 5.6}\\2.2_{\pm 0.9}\\0.19$	$\begin{array}{c} 27.4_{\pm 2.3} \\ 2.5_{\pm 0.5} \\ 0.17 \end{array}$	$\begin{array}{c} 28.7_{\pm 1.3} \\ 1.8_{\pm 0.6} \\ 0.24 \end{array}$

• Evaluating results demonstrate the effectiveness of the adaptive fidelity identification strategy.

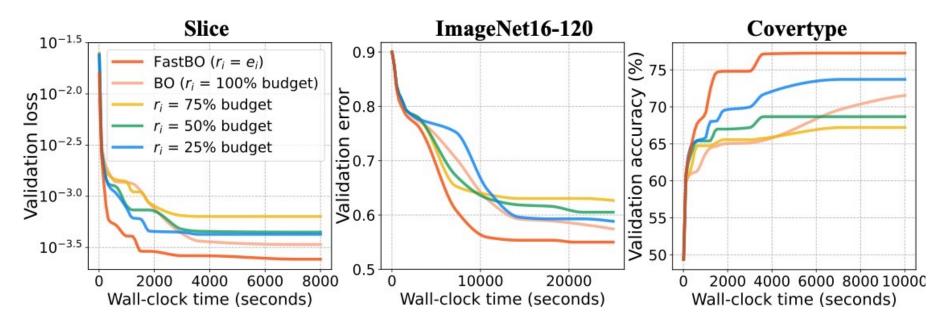


Figure 3. Performance of FastBO that adaptively sets $r_i = e_i$ with the schemes that use fixed r_i for all configurations.

- 1. We propose a multi-fidelity model-based HPO method that adaptively decides the fidelities for configurations, thanks to the introduced concepts of efficient and saturation points.
- 2. We develop a learning curve modeling module to adaptively extract the key points, a warm-up stage for early-termination detection, and a post-processing stage for efficient evaluation.
- 3. Our strategy can be used to extend any single-fidelity methods to multifidelity setting.