

Efficient Hyperparameter Optimization with Adaptive Fidelity Identification

Jiantong Jiang¹, Zeyi Wen^{2,3}, Atif Mansoor¹, Ajmal Mian¹ *The University of Western Australia Hong Kong University of Science and Technology (Guangzhou) Hong Kong University of Science and Technology*

- The performance of machine learning models strongly depends on the choice of **hyperparameters**.
- **Hyperparameter Optimization (HPO)**: automatically find hyperparameters or architectures that yield SOTA performance.

- Crucial HPO directions: model-based methods, multi-fidelity methods.
- **Model-based methods**: follow Bayesian optimization (BO) framework.

• Major limitation: require expensive full evaluation of each configuration to get its final (highest) fidelity performance.

- Crucial HPO directions: model-based methods, multi-fidelity methods.
- **Multi-fidelity methods**: consider performance at different resource levels (fidelities); follow successive halving (SHA) framework.

• Major limitation: use a simple random configuration search.

- Combining model-based and multi-fidelity methods: replace the random sampling in SHA with BO.
	- Issue: learning curves of different configurations can intersect.
	- Limitation: early performance got through fixed low fidelities (e.g. 1, 2, 4, 8, …) cannot always indicate high-fidelity performance.

Challenge: *What is the appropriate fidelity for each configuration to fit the surrogate model?*

- "Efficient point": $e_i = \min\{r | C_i(r) C_i(2r) < \delta_1\}$
	- When resources are doubled (from r to $2r$), the performance improvement falls below a small threshold.
	- Get strong performance while still efficiently using resources.
	- Use as the fidelity to fit the surrogate model.

Definition 1 (Efficient point). For a given learning curve $\mathcal{C}_i(r)$ of hyperparameter configuration λ_i , where r represents the resource level (also referred to as fidelity), the efficient point e_i of λ_i is defined as: $e_i = \min\{r \mid C_i(r) C_i(2r) < \delta_1$, where δ_1 is a predefined small threshold.

- "Saturation point": $s_i = \min\{r | \forall r' > r, |C_i(r') C_i(r) < \delta_2\}$
	- Performance does not have notable variations with more resources.
	- Use as a final fidelity approximation.

Definition 2 (Saturation point). For a given learning curve $C_i(r)$ of configuration λ_i , where r represents the resource level (also referred to as fidelity), the saturation point s_i of λ_i is defined as: $s_i = \min\{r \mid \forall r' > r, |\mathcal{C}_i(r') - \mathcal{C}_i(r)| <$ δ_2 , where δ_2 is a predefined small threshold.

FastBO Methodology

• Process overview

- FastBO can be generalized to any single-fidelity methods.
	- Extend single-fidelity methods to multi-fidelity setting: evaluate each config to the efficient point instead of to the final fidelity.
	- Even model-free methods can be improved by our extension strategy.

Figure 1. Performance of single-fidelity methods CQR, BORE, REA and their multi-fidelity variants using our extension method.

- Anytime performance
	- FastBO can handle various performance metrics.
	- FastBO gains an advantage earlier than other methods.

Figure 2. Performance on the LCBench, NAS-Bench-201, and FCNet benchmarks.

- Efficiency on configuration identification
	- FastBO saves 10% to 87% wall-clock time when achieving up to 9.6% better performance values.

Table 2. Comparison of relative efficiency on configuration identification. FastBO is set as the baseline with a relative efficiency of 1.00. Wall-clock time (abbr. WC time) reports the elapsed time spent for each method on finding configurations with similar performance metrics, i.e., validation error $(\times 10^{-2})$ for Covertype and ImageNet16-120 and validation loss $(\times 10^{-5})$ for Slice.

• Evaluating results demonstrate the effectiveness of the adaptive fidelity identification strategy.

Figure 3. Performance of FastBO that adaptively sets $r_i = e_i$ with the schemes that use fixed r_i for all configurations.

- 1. We propose a multi-fidelity model-based HPO method that adaptively decides the fidelities for configurations, thanks to the introduced concepts of efficient and saturation points.
- 2. We develop a learning curve modeling module to adaptively extract the key points, a warm-up stage for early-termination detection, and a post-processing stage for efficient evaluation.
- 3. Our strategy can be used to extend any single-fidelity methods to multifidelity setting.