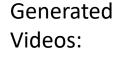


TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models

Zhongwei Zhang¹, Fuchen Long², Yingwei Pan², Zhaofan Qiu², Ting Yao², Yang Cao¹, Tao Mei² ¹University of Science and Technology of China ²HiDream.ai Inc.



Unconditional、 Motion driven(trajectory, motion sequence)、 Text Prompt driven

CINN^[1]

DragNUWA^[2]

MagicAnimate^[3]

Honey bee collecting pollen on a blooming sunflower

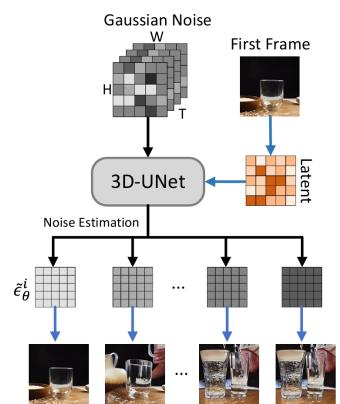
VideoComposer^[4]

Our focus is: Text driven I2V task

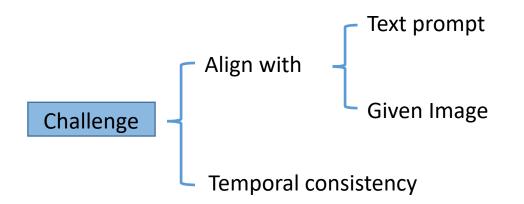
[1] Dorkenwald, Michael, et al. Stochastic image-to-video synthesis using cinns. In CVPR, 2021.

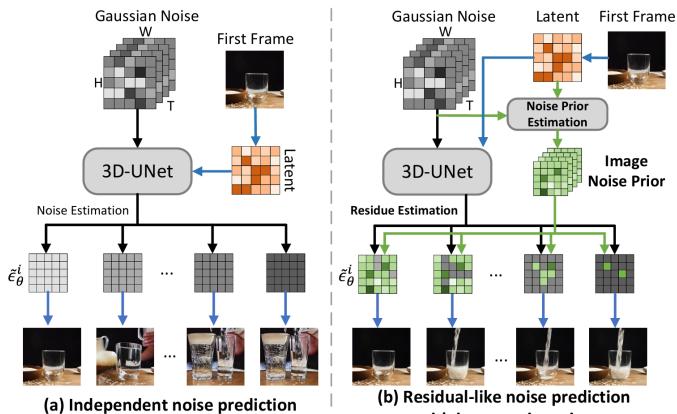
[2] Yin, Shengming, et al. Dragnuwa: Fine-grained control in video generation by integrating text, image, and trajectory. arXiv preprint arXiv:2308.08089, 2023.

[3] Xu, Zhongcong, et al. MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model. In CVPR, 2024.


[4] Alibaba Group. VideoComposer: Compositional Video Synthesis with Motion Controllability. In NeurIPS, 2023.

Limitation





(a) Independent noise prediction



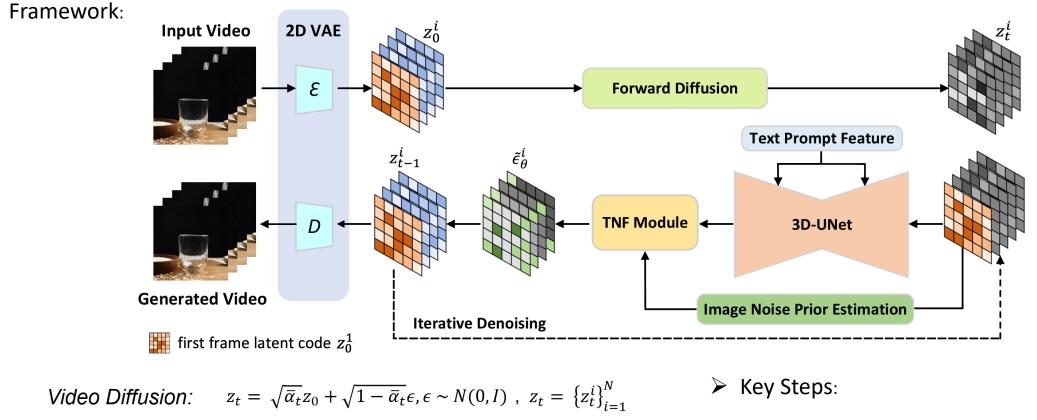
- Typical Image-to-Video Diffusion^[1]:
 - Independent noise prediction of each frame
 - Ignoring the inherent relation between video frames
 - Lack of temporal coherence modeling

Temporal Residual Learning with Image Noise Prior

(b) Residual-like noise prediction with image noise prior

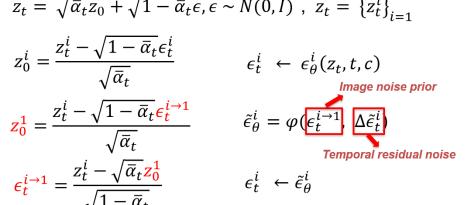
Pouring of rice water from jug into glass on

VideoComposer


- Temporal Residual Learning with Image Noise Prior (TRIP): residual-like dual-path scheme
 - Take image noise prior as reference noise to amplify alignment across frames
 - Residual noise learning to capture motion dynamics
 - Attention mechanism for reference and residual noise merging

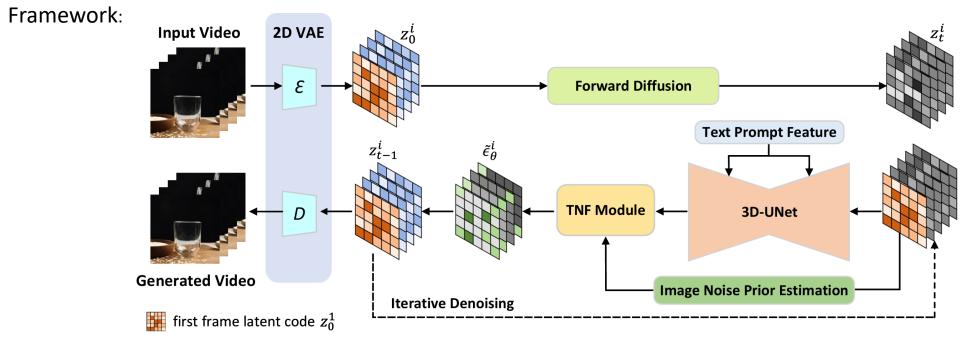
Better Temporal Consistency

Temporal Residual Learning with Image Noise Prior



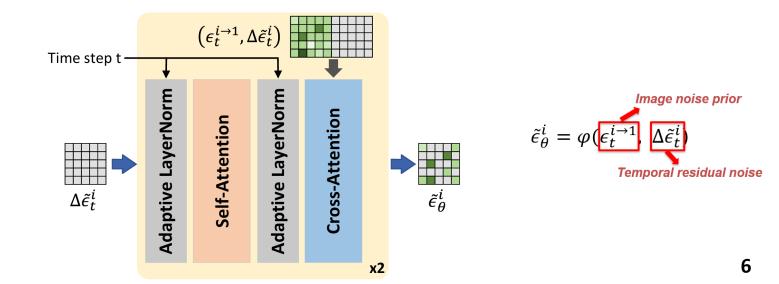
Typical noise formulation:

 \succ


TRIP noise formulation:

- Image Noise Prior Computation
- Temporal Residual Noise Prediction
- Attention mechanism for reference and residual noise merging(TNF module)

Temporal Residual Learning with Image Noise Prior



> TNF(Temporal Noise Fusion Module):

> Training loss:

 \geq

$$\tilde{\mathcal{L}} = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I), t,c,i} [\|\epsilon_t^i - \tilde{\epsilon}_{\theta}^i\|^2]$$

Experimental Analysis

Table 1. Performances of F-Consistency (F-Consistency₄: consistency among the first four frames, F-Consistency_{*all*}: consistency among all frames) and FVD on WebVid-10M.

Approach	F-Consistency ₄ (\uparrow)	F-Consistency _{all} (\uparrow)	$\mathbf{FVD}\left(\downarrow ight)$
T2V-Zero [32]	91.59	92.15	279
VideoComposer [60]	88.78	92.52	231
TRIP	95.36	96.41	38.9

Table 2. Performances of averaged FID and FVD over four scene categories on DTDB dataset.

Approach	Zero-shot	FID (↓)	$\mathbf{FVD}\left(\downarrow\right)$
AL [11]	No	65.1	934.2
cINN [9]	No	31.9	451.6
TRIP	Yes	24.8	433.9

Table 3. Performances of FID and FVD on MSR-VTT dataset.

Approach	Model Type	FID (\downarrow)	$\mathbf{FVD}\;(\downarrow)$
CogVideo [28]	T2V	23.59	1294
Make-A-Video [52]	T2V	13.17	-
VideoComposer [60]	T2V	-	580
ModelScopeT2V [59]	T2V	11.09	550
VideoComposer [60]	I2V	31.29	208
TRIP	I2V	9.68	91.3

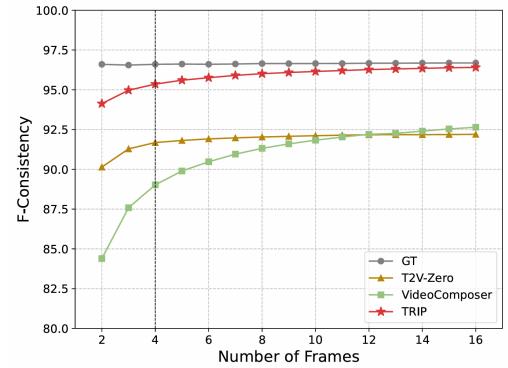


Figure 4. Performance comparisons of F-Consistency by using different number of frames on WebVid-10M.

Experimental Analysis

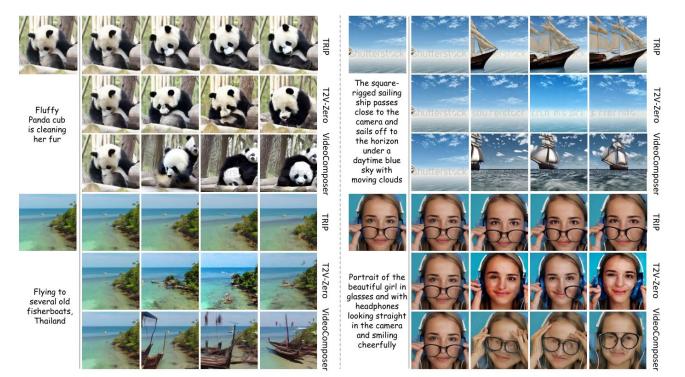


Figure 5. Examples of I2V generation results by three methods (VideoComposer, T2V-Zero, and our TRIP) on WebVid-10M dataset. We uniformly sample four frames of each generated video for visualization.

Better Temporal Consistency

Table 6. Evaluation of temporal residual learning in terms of F-Consistency and FVD on WebVid-10M dataset.

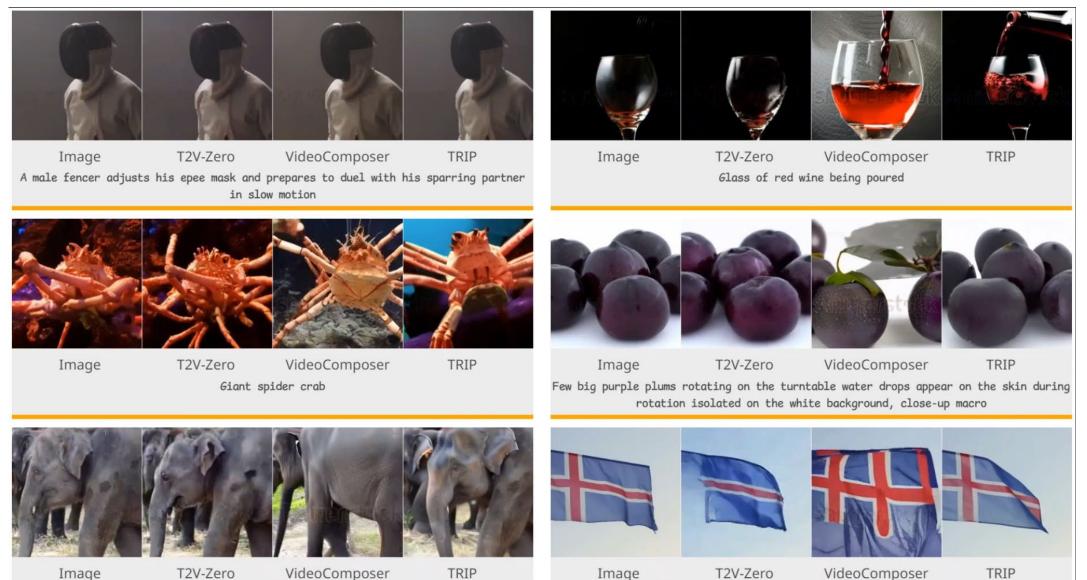

Model	F-Consistency ₄ (\uparrow)	F-Consistency _{all} (↑)	FVD (\downarrow)
$TRIP^-$ $TRIP^W$	$94.66 \\ 95.22$	$95.92 \\ 95.96$	$\begin{array}{c} 39.9\\ 43.0\end{array}$
TRIP	95.36	96.41	38.9

Figure 8. Visualization of I2V example with text prompt "Young male tourist taking a photograph of old city on sunset" by using variants of our TRIP.

More Results

Asian elephants, thailand

Close-up view national flag of Iceland waving in the wind on a blue sky background without clouds, national symbol consists of a blue background bearing a red cross

More Results

Two parrots are sitting on a branch in the forest(SD-XL)

A castle in the middle of a forest with a river running through it(SD-XL)

WALL-E on the beach with a plant in his hand(SD-XL)

A fox is walking in the woods at night(SD-XL)

A ship sails in the sea(SD-XL)

Crabs with bubbles crawls on the beach with sunset in the background(SD-XL)

A bear is playing a guitar in front of a tank in the snow(SD-XL)

A giant robot with pumpkins on it(SD-XL)

Halloween pumpkin with glowing eyes and smoke coming out of it(SD-XL)

Thanks!

Contact: zhwzhang@mail.ustc.edu.cn

Project Page: https://trip-i2v.github.io/TRIP/