

Robust Distillation via Untargeted and Targeted Intermediate Adversarial Samples

Junhao Dong, Piotr Koniusz, Junxi Chen, Z. Jane Wang, Yew-Soon Ong

Reporter: Junhao Dong

Adversarial examples are tailored inputs with the purpose of confusing neural networks. (Visually similar to natural examples)

Introducing gradient ascent at the image level.

Adversarial Training (min-max optimization):

$$\min_{\boldsymbol{\theta}} \mathbb{E}_{(\mathbf{x},y)\sim\mathcal{D}} \left[\mathcal{L}_{CE} \left(f_{\boldsymbol{\theta}} \left(\mathbf{x} \right), y \right) + \max_{\|\boldsymbol{\delta}\|_{\infty} < \epsilon} \mathcal{L}_{KL} \left(f_{\boldsymbol{\theta}} \left(\mathbf{x} \right) \| f_{\boldsymbol{\theta}} \left(\mathbf{x} + \boldsymbol{\delta} \right) \right) \right]$$

Legitimate features

Adversarially Robust Knowledge Distillation

Adversarially Robust Knowledge Distillation

Adversarially Robust Knowledge Distillation

Untargeted Adversary Generation

 $\mathbf{\hat{x}}^{(}$

$$\begin{split} ^{i+1)} &= \vartheta_{\alpha}(\mathbf{\hat{x}}^{(i)}, y) \\ &= \prod_{\mathbb{B}(\mathbf{x}, \epsilon)} \left(\mathbf{\hat{x}}^{(i)} + \alpha \cdot \operatorname{sign}\left(\nabla_{\mathbf{\hat{x}}^{(i)}} \mathcal{L}_{\operatorname{CE}}(f_{\boldsymbol{\theta}}(\mathbf{\hat{x}}^{(i)}), y) \right) \right) \end{split}$$

Prediction Alignment of Clean and Adversarial Samples

 $\mathcal{L}_{\text{ARKD}} = \underbrace{\mathcal{L}_{\text{KL}}(f_{\boldsymbol{\theta}_{t}}(\mathbf{x}) \| f_{\boldsymbol{\theta}_{s}}(\mathbf{x}))}_{+\beta} + \beta \cdot \underbrace{\mathcal{L}_{\text{KL}}(f_{\boldsymbol{\theta}_{t}}(\mathbf{\hat{x}}) \| f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}))}_{+\beta}$

alignment of "natural distributions"

alignment of "adversarial distributions"

Intermediate Adversarial Knowledge Distillation

Objective Function n-1

$$\mathcal{L}_{\text{IAKD}} = \sum_{i=1} w \left(\mathbf{\hat{x}}^{(i)} | \mathbf{x} \right) \cdot \mathcal{L}_{\text{KL}} \left(f_{\boldsymbol{\theta}_{t}} \left(\mathbf{\hat{x}}^{(i)} \right) \| f_{\boldsymbol{\theta}_{s}} \left(\mathbf{\hat{x}}^{(i)} \right) \right)$$

Re-weighting $w(\mathbf{\hat{x}}^{(i)}|\mathbf{x}) = \frac{(1-\gamma)i}{n} + \frac{\gamma \left| \left(f_{\boldsymbol{\theta}_{t}}(\mathbf{x}) \right)_{y} - \left(f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}^{(i)}) \right)_{y} \right|}{\max_{j \in \mathcal{B}} \left| \left(f_{\boldsymbol{\theta}_{t}}(\mathbf{x}_{j}) \right)_{y_{j}} - \left(f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}^{(i)}_{j}) \right)_{y_{j}} \right|}$

We theoretically prove that such a weighting mechanism captures the localized κ -Lipschitz smoothness of the student model.

Dual-branch Adversarially Robust knowledge distillatioN (DARWIN)

Repulsion

$$\begin{array}{l} \overline{\mathbf{g}} \left\{ \left\{ f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}^{(i)}) \right\}_{i=1}^{n} \leftrightarrow f_{\boldsymbol{\theta}_{t}}(\mathbf{x}') \\ \left\{ f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}'^{(i)}) \right\}_{i=1}^{n} \leftrightarrow f_{\boldsymbol{\theta}_{t}}(\mathbf{x}) \end{array} \right. \end{array}$$

Dual-Branch Knowledge Distillation

$$\mathcal{L}_{\text{DBKD}} = \sum_{i=1}^{n} \left[w(\mathbf{\hat{x}}^{(i)} | \mathbf{x}) \mathcal{L}_{\text{tri}}(f_{\boldsymbol{\theta}_{t}}(\mathbf{x}), f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}^{(i)}), f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}^{\prime(i)})) + w(\mathbf{\hat{x}}^{\prime(i)} | \mathbf{x}^{\prime}) \mathcal{L}_{\text{tri}}(f_{\boldsymbol{\theta}_{t}}(\mathbf{x}^{\prime}), f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}^{\prime(i)}), f_{\boldsymbol{\theta}_{s}}(\mathbf{\hat{x}}^{(i)})) \right]$$

Dual-branch Adversarially Robust knowledge distillatioN (DARWIN)

Standard Comparison (Distillation from a Large Model):

Type	Architecture	Method	v	CIFAR-10			CIFAR-100				
1790			3	Natural	PGD-20	CW	AA	Natural	PGD-20	CW	AA
Teacher	WRN-34	TRADES [58]	✓	84.92	55.34	54.21	52.55	60.04	31.56	28.64	27.38
Student	ResNet-18	ARD [15] IAD [63] RSLAD [64] CRDND [54] GACD [1] DARWIN DARWIN-LF	>>×××× >×	82.95 82.41 83.12 83.92 82.76 84.48 84.35	52.26 53.06 53.91 52.70 53.42 55.07 55.02	51.69 51.79 52.84 50.95 52.26 53.85 53.85 53.99	49.46 49.78 51.19 49.05 50.07 52.24 52.33	57.46 56.38 57.23 58.03 56.82 59.12 59.04	30.14 30.61 31.08 30.16 31.19 32.30 32.18	27.11 27.35 28.29 27.02 27.81 28.95 28.62	25.30 25.51 26.62 25.68 26.12 27.26 27.13
	MNV2	ARD [15] IAD [63] RSLAD [64] CRDND [54] GACD [1] DARWIN DARWIN-LF	✓ ✓ × × × × ×	82.44 81.61 82.89 82.77 82.90 84.06 84.08	51.91 52.30 52.72 52.57 52.49 53.94 53.76	50.64 50.19 52.04 50.11 51.40 53.11 52.80	48.40 48.34 50.04 49.28 49.55 51.28 51.09	55.28 54.26 57.31 56.24 56.10 58.45 58.41	30.23 30.46 30.48 29.65 30.49 31.53 31.44	27.05 27.13 27.86 26.68 27.18 28.36 28.33	25.28 25.50 25.89 25.61 25.33 26.55 26.55 26.58

Robust Distillation from ViTs:

Туре	Architecture	Method	Natural	PGD-20	AA
Teacher	ViT-B	AT-PRM [33]	83.98	53.10	49.66
		ARD [15]	82.76	52.95	49.03
		RSLAD [64]	82.33	54.89	49.74
	ResNet-18	IAD [63]	82.27	53.42	49.48
Student		CRDND [54]	82.19	53.16	48.98
		GACD [1]	81.64	54.24	49.95
		DARWIN	83.75	54.80	51.42
		DARWIN-LF	83.73	54.95	51.49
Teacher	DeiT-S	AT-PRM [33]	82.68	52.47	49.27
		ARD [15]	81.59	53.45	49.20
		RSLAD [64]	80.86	53.91	50.18
	MNV2	IAD [63]	80.41	54.12	49.62
Student		CRDND [54]	80.27	52.21	48.46
		GACD [1]	79.97	54.00	48.91
		DARWIN	83.02	54.46	51.19
		DARWIN-LF	83.15	54.62	51.13

Self-Distillation w/ Generated Data:

Dataset	Туре	DDPM	Method	Natural	Robust
	Teacher	×	TRADES [58]	82.45	48.90
		✓	ARD [15]	82.89	53.41
CIFAR-10		\checkmark	RSLAD [64]	82.05	52.60
	Student	\checkmark	IAD [63]	82.95	53.47
		\checkmark	DARWIN	84.13	55.92
		\checkmark	DARWIN-LF	84.68	56.41
	Teacher	×	TRADES [58]	56.37	23.78
		\checkmark	ARD [15]	56.07	26.92
CIFAR-100		\checkmark	RSLAD [64]	53.40	26.00
	Student	\checkmark	IAD [63]	55.82	26.77
		\checkmark	DARWIN	58.18	28.24
		\checkmark	DARWIN-LF	58.74	28.45

Ablations:

Impact of Each Module

A	ARKD	IAKD	DBKD	Natural	PGD-20	AA
1	1			83.09/57.34	53.95/30.59	50.66/25.32
2 3	✓ ✓	V	1	82.74/56.68 84.68/59.23	54.52/32.11 54.36/31.53	51.21/26.95
	\checkmark	\checkmark	\checkmark	84.48/59.12	55.07/32.30	52.24/27.26

Diverse Weighting Strategies

Weighting Strategies	CIFAR-10			CIFAR-100		
Heighting Stategies	Natural	PGD	AA	Natural	PGD	AA
Uniform Weighting (no weights)	83.32	53.84	50.92	57.81	30.95	25.70
First Term switched on $(\gamma = 0)$	84.13	54.18	51.58	58.53	31.44	26.20
Second Term switched on $(\gamma = 1)$	83.85	54.45	51.82	58.16	31.82	26.47
Both Terms switched on ($\gamma = 0.5$)	84.48	55.07	52.24	59.12	32.30	27.26

Attention Visualizations:

Contributions:

- We propose a novel robust knowledge distillation method that integrates intermediate adversaries along the adversarial path. An adaptive weighting mechanism is proposed to calibrate the influence of each intermediate sample to facilitate the distillation of adversarial paths.
 Our strategy also leads to minimizing an upper bound of the adversarially robust risk.
- To capture relations between decision boundaries, we devise a dual-branch mechanism by harnessing the complementary characteristics of untargeted and targeted adversarial samples. This inter-class relational learning facilitates a more effective robustness transfer.
- Extensive experiments showcase the superiority of our method compared with the state-of-theart approaches across various settings, including diverse backbones, auxiliary data, and crossdataset distillation.

Thank you!

Robust Distillation via Untargeted and Targeted Intermediate Adversarial Samples

Junhao Dong, Piotr Koniusz, Junxi Chen, Z. Jane Wang, Yew-Soon Ong

Reporter: Junhao Dong