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Severe overfitting in Adversarial Training

Adversarial training (AT) has been viewed
as the main stream learning paradigm for
obtaining robust classifier, which
minimizes the worst-case loss within an
ϵ-neighborhood of the input space.

min
θ

Ladv(θ) :=
1

n

n∑
i=1

max
δi∈∆

ℓ(xi + δi, yi; θ).

AT suffers from robust overfitting (RO),
characterized by a significant
generalization gap in robust accuracy
between the training and testing curves.
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Figure: Robust overfitting
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Previous theoretical understandings of RO

Theorem (Label noise in AT)

Assume f(x)y is L− locally Lipschitz around x with Hessian bounded below, i.e.,
σmin ≤ σ ≤ σmax and σmin = infz∈Bϵ(z) σmin(∇2f(z)y) > 0. With probability 1− δ,
we have

pe(D′) ≥ ϵ

2
(1− q(D))

σmin

L
− ϵ

4
σmax −

√
1

2N
log

2

δ

where σ2 is the smallest eigenvalue of κ.

Assigned labels of adversarial examples are simply inherited from their clean
counterparts.
It suggests that as long as a training set is augmented by adversarial perturbation,
but with assigned labels unchanged, label noise emerges.
To reduce the label distribution mismatch, [2] rectify model probability with an
adversarially trained teacher, which has exacerbated the consumption of
computing resources.
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Understanding RO through the lens of Noisy Label Learning

Does there exist more hands-off and hassle-free mitigation for robust overfitting?

Since the training process teeming with label noise, we could directly take noisy label
learning into account during adversarial training.

Lemma

Under PAC-Bayes framework, the expected cross entropy loss could be reformulated as
follows:

Hf (ŷ|x,w) = ESEw∼Q(w|S)

m∑
i=1

[− log f(ŷi|xi, w)]

= H(y|x) + Ex,w∼Q(w|S)KL[p(y|x) ∥ f(ŷ|x,w)]− I(w; y|x)

Noisy labels viewed as the outlier of true label distribution can provide a positive
value of I(w; y|x) (Information in weights) as training goes.
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Empirical perspective
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According to the LR decays, the training process could be divided into two stages:
(i) Stationary Stage (ii) Non-monotonical Growth Stage.
The abrupt increment of gradient norm, failing to converge to a constant, could be
seen as an indicator of memorization effects (on noisy labels) during learning.
Simultaneously, the behavior of the IIW exhibits trends similar to that of the
gradient norm, which could be viewed as a characteristic of RO.
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Could we reduce the IIW so as to mitigate RO?

Theorem

Let u be the uniform random variable with p.d.f p(u). By using the composition in
Lemma 1., there exists an interpolation ration λ between the clean label distribution
and uniform distribution, such that

I(y∗;w|x′) ≲ I(y;w|x′)

where p(y∗|x′, w) = λ · p(y|x′, w) + (1− λ) · p(u) and the symbol ≲ means that the
corresponding inequality up to an c-independent constant.

For some type of soft label, there exists an excellent label distribution
interpolation between clean label distribution and well-designed label distribution
that could effectively reduce the IIW.
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Method: Self-Guided Label Refinement

From Theorem 2, we note that some type of soft label can reduce IIW, thus
mitigating RO. So we could rectify model prediction probability with reliable
knowledge learned by model itself.

y = r · p̃t + (1− r) · yhard

p̃t =α · p̃t−1 + (1− α) · f̃(x, x′;wt)
(1)
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Figure: Robust accuracy of models employing different label assignment methods.
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Results on CIFAR-10

Table: Test accuracy (%) of the proposed method and other methods on CIFAR-10 under the
ℓ∞ norm with ϵ = 8/255 based on the ResNet-18 architecture.

Method
Natural Accuracy PGD-20 AutoAttack

Best Final Diff ↓ Best Final Diff ↓ Best Final Diff ↓
PGD-AT 80.7 82.4 -1.6 50.7 41.4 9.3 47.7 40.2 7.5
PGD-AT+LS 82.2 84.3 -2.1 53.7 48.9 4.8 48.4 44.6 3.9
PGD-AT+TE 82.4 82.8 -0.4 55.8 54.8 1.0 50.6 49.6 1.0
PGD-AT+SGLR 82.9 83.0 -0.1 56.4 55.9 0.5 51.2 50.2 1.0

AWP 82.1 81.1 1.0 55.4 54.8 0.6 50.6 49.9 0.7

KD-AT 82.9 85.5 -2.6 54.6 53.2 1.4 49.1 48.8 0.3
KD-SWA 84.7 85.4 -0.8 54.9 53.8 1.1 49.3 49.4 -0.1
PGD-AT + SGLR 82.9 83.0 -0.1 56.4 55.9 0.5 51.2 50.2 1.0
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Results on other datasets.

Table: Clean accuracy and robust accuracy (%) of ResNet 18 trained on different benchmark
datasets. All threat models are under ℓ∞ norm with ϵ = 8/255. The bold indicates the
improved performance achieved by the proposed method.

Dataset Method
Natrural Accuracy PGD-20 AutoAttack

Best Final Diff ↓ Best Final Diff ↓ Best Final Diff ↓

CIFAR-10

AT 80.7 82.4 -1.6 50.7 41.4 9.3 47.7 40.2 7.5
+SGLR 82.9 83.0 0.1 56.4 55.9 0.5 51.2 50.2 1.0

TRADES 81.2 82.5 -1.3 53.3 50.3 3.0 49.0 46.8 2.2
+SGLR 82.2 83.3 -0.9 55.8 55.4 0.4 50.7 50.1 0.6

CIFAR-100

AT 53.9 53.6 0.3 27.3 19.8 7.5 22.7 18.1 4.6
+SGLR 56.9 56.6 0.3 34.5 34.3 0.2 27.5 26.7 0.8

TRADES 57.9 56.3 1.7 29.9 27.7 2.2 24.6 23.4 1.2
+SGLR 57.1 57.4 -0.3 33.9 33.2 0.7 27.1 26.4 0.7
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Separable features of T-SNE plot under different noise rate.
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Conclusion

We provide empirical and theoretical understanding on robust overfitting through
the perspective of noisy label learning.

We propose Self-Guided Label Refinement to obtain an informative label
distribution, which achieves significantly improved clean and robust accuracy.

ArXiv: https://arxiv.org/abs/2403.09101
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