Soften to Defend: Towards Adversarial Robustness via Self-Guided Label Refinement

$\begin{array}{cccc} \textbf{Zhuorong Li}^{*1} & \textbf{Daiwei Yu}^{*1} & \text{Lina Wei}^1 & \text{Canghong Jin}^1 & \text{Yun Zhang}^1 \\ & \text{Sixian Chan}^2 \end{array}$

¹Hangzhou City University, Hangzhou, China

²Zhejiang University of Technology, Hangzhou, China

CVPR 2024

1 Background

2 Understanding RO through the lens of Noisy Label Learning

3 Method: Self-Guided Label Refinement

4 Experiments

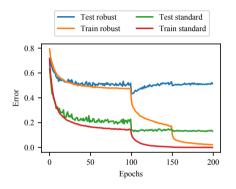
5 Conclusion

Severe overfitting in Adversarial Training

 Adversarial training (AT) has been viewed as the main stream learning paradigm for obtaining robust classifier, which minimizes the worst-case loss within an ε-neighborhood of the input space.

$$\min_{\theta} \mathcal{L}_{adv}(\theta) := \frac{1}{n} \sum_{i=1}^{n} \max_{\delta_i \in \Delta} \ell(x_i + \delta_i, y_i; \theta).$$

 AT suffers from robust overfitting (RO), characterized by a significant generalization gap in robust accuracy between the training and testing curves.





Theorem (Label noise in AT)

Assume $f(x)_y$ is L-locally Lipschitz around x with Hessian bounded below, i.e., $\sigma_{min} \leq \sigma \leq \sigma_{max}$ and $\sigma_{min} = \inf_{z \in \mathcal{B}_{\epsilon}(z)} \sigma_{min}(\nabla^2 f(z)_y) > 0$. With probability $1 - \delta$, we have

$$p_e(\mathcal{D}') \ge \frac{\epsilon}{2}(1-q(\mathcal{D}))\frac{\sigma_{min}}{L} - \frac{\epsilon}{4}\sigma_{max} - \sqrt{\frac{1}{2N}\log\frac{2}{\delta}}$$

where σ^2 is the smallest eigenvalue of κ .

- Assigned labels of adversarial examples are simply inherited from their clean counterparts.
- It suggests that as long as a training set is augmented by adversarial perturbation, but with assigned labels unchanged, label noise emerges.
- To reduce the label distribution mismatch, [2] rectify model probability with an adversarially trained teacher, which has exacerbated the consumption of computing resources.

Understanding RO through the lens of Noisy Label Learning

Does there exist more hands-off and hassle-free mitigation for robust overfitting?

Since the training process teeming with label noise, we could **directly** take *noisy label learning* into account during adversarial training.

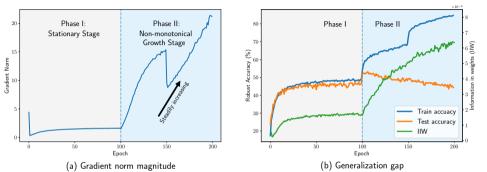
Lemma

Under PAC-Bayes framework, the expected cross entropy loss could be reformulated as follows:

$$\mathcal{H}_f(\hat{y}|x,w) = \mathbb{E}_{\mathcal{S}} \mathbb{E}_{w \sim Q(w|\mathcal{S})} \sum_{i=1}^m \left[-\log f(\hat{y}_i|x_i,w) \right]$$
$$= \mathcal{H}(y|x) + \mathbb{E}_{x,w \sim Q(w|\mathcal{S})} \operatorname{KL}[p(y|x) \parallel f(\hat{y}|x,w)] - I(w;y|x)$$

Noisy labels viewed as the outlier of true label distribution can provide a positive value of I(w; y|x) (Information in weights) as training goes.

Empirical perspective



- According to the LR decays, the training process could be divided into two stages:
 (i) Stationary Stage (ii) Non-monotonical Growth Stage.
- The abrupt increment of gradient norm, failing to converge to a constant, could be seen as an indicator of memorization effects (on noisy labels) during learning.
- Simultaneously, the behavior of the IIW exhibits trends similar to that of the gradient norm, which could be viewed as a characteristic of RO.

Theorem

Let u be the uniform random variable with p.d.f p(u). By using the composition in Lemma 1., there exists an interpolation ration λ between the clean label distribution and uniform distribution, such that

 $I(y^*; w | x') \lesssim I(y; w | x')$

where $p(y^*|x', w) = \lambda \cdot p(y|x', w) + (1 - \lambda) \cdot p(u)$ and the symbol \leq means that the corresponding inequality up to an *c*-independent constant.

For some type of soft label, there exists an excellent label distribution interpolation between clean label distribution and well-designed label distribution that could effectively reduce the IIW.

Method: Self-Guided Label Refinement

From Theorem 2, we note that some type of soft label can **reduce IIW**, thus **mitigating RO**. So we could rectify model prediction probability with **reliable** knowledge learned by **model itself**.

$$\mathbf{y} = r \cdot \widetilde{p}_t + (1 - r) \cdot \mathbf{y}_{hard}$$

$$\widetilde{p}_t = \alpha \cdot \widetilde{p}_{t-1} + (1 - \alpha) \cdot \widetilde{f}(x, x'; w_t)$$
(1)

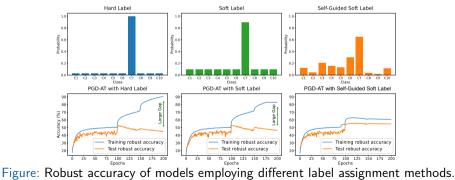


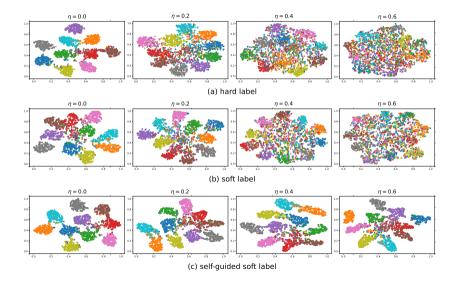
Table: Test accuracy (%) of the proposed method and other methods on CIFAR-10 under the ℓ_{∞} norm with $\epsilon = 8/255$ based on the ResNet-18 architecture.

Method	Natural Accuracy				PGD-2	C	AutoAttack		
	Best	Final	$Diff\downarrow$	Best	Final	$Diff\downarrow$	Best	Final	$Diff\downarrow$
PGD-AT	80.7	82.4	-1.6	50.7	41.4	9.3	47.7	40.2	7.5
PGD-AT+LS	82.2	84.3	-2.1	53.7	48.9	4.8	48.4	44.6	3.9
PGD-AT+TE	82.4	82.8	-0.4	55.8	54.8	1.0	50.6	49.6	1.0
PGD-AT+SGLR	82.9	83.0	-0.1	56.4	55.9	0.5	51.2	50.2	1.0
AWP	82.1	81.1	1.0	55.4	54.8	0.6	50.6	49.9	0.7
KD-AT	82.9	85.5	-2.6	54.6	53.2	1.4	49.1	48.8	0.3
KD-SWA	84.7	85.4	-0.8	54.9	53.8	1.1	49.3	49.4	-0.1
PGD-AT+SGLR	82.9	83.0	-0.1	56.4	55.9	0.5	51.2	50.2	1.0

Table: Clean accuracy and robust accuracy (%) of ResNet 18 trained on different benchmark datasets. All threat models are under ℓ_{∞} norm with $\epsilon = 8/255$. The bold indicates the improved performance achieved by the proposed method.

Dataset	Method	Natrural Accuracy			PGD-20			AutoAttack		
		Best	Final	$Diff\downarrow$	Best	Final	$Diff\downarrow$	Best	Final	$Diff\downarrow$
CIFAR-10	AT	80.7	82.4	-1.6	50.7	41.4	9.3	47.7	40.2	7.5
	+SGLR	82.9	83.0	0.1	56.4	55.9	0.5	51.2	50.2	1.0
	TRADES	81.2	82.5	-1.3	53.3	50.3	3.0	49.0	46.8	2.2
	+SGLR	82.2	83.3	-0.9	55.8	55.4	0.4	50.7	50.1	0.6
CIFAR-100	AT	53.9	53.6	0.3	27.3	19.8	7.5	22.7	18.1	4.6
	+SGLR	56.9	56.6	0.3	34.5	34.3	0.2	27.5	26.7	0.8
	TRADES	57.9	56.3	1.7	29.9	27.7	2.2	24.6	23.4	1.2
	+SGLR	57.1	57.4	-0.3	33.9	33.2	0.7	27.1	26.4	0.7

Separable features of T-SNE plot under different noise rate.



- We provide empirical and theoretical understanding on robust overfitting through the perspective of noisy label learning.
- We propose Self-Guided Label Refinement to obtain an informative label distribution, which achieves significantly improved clean and robust accuracy.

ArXiv: https://arxiv.org/abs/2403.09101