

IMPRINT: Generative Object Compositing by Learning Identity-Preserving Representation

> Yizhi Song¹, Zhifei Zhang², Zhe Lin², Scott Cohen², Brian Price², Jianming Zhang², Soo Ye Kim², He Zhang², Wei Xiong², Daniel Aliaga¹ ¹Purdue University, ²Adobe Research

Poster: WED-PM-7884 Project page: https://song630.github.io/IMPRINT-Project-Page/

1. Task definition

- Generative object composition: first defined in *ObjectStitch*
- Given the location + scale, insert the object into a background image

Requirements:

- Harmonization
- Shadow synthesis
- View synthesis
- Identity preservation

Song, Y., Zhang, Z., Lin, Z., Cohen, S., Price, B., Zhang, J., Kim, S.Y. and Aliaga, D., 2023. Objectstitch: Object compositing with diffusion model. CVPR 2023.

2. Limitations

- Cannot well preserve the identity
- No control over the generation

3. IMPRINT: overview

- Identity-preservation is improved
- Mask-control is supported to edit object poses

Song, Y., Zhang, Z., Lin, Z., Cohen, S., Price, B., Zhang, J., Kim, S.Y., Zhang, H., Xiong, W. and Aliaga, D., 2024. IMPRINT: Generative Object Compositing by Learning Identity-Preserving Representation. CVPR 2024.

4. Related works

• Encoder-based methods: *Paint-by-Example*, *AnyDoor*, *IP-Adapter*

Yang, B., Gu, S., Zhang, B., Zhang, T., Chen, X., Sun, X., Chen, D. and Wen, F., 2023. Paint by example: Exemplar-based image editing with diffusion models. CVPR 2023. Chen, X., Huang, L., Liu, Y., Shen, Y., Zhao, D. and Zhao, H., 2023. Anydoor: Zero-shot object-level image customization. CVPR 2024. Ye, H., Zhang, J., Liu, S., Han, X. and Yang, W., 2023. Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721.

4. Related works

• Attention manipulation: InstantBooth, ControlCom, TF-ICON

Shi, J., Xiong, W., Lin, Z. and Jung, H.J., 2023. Instantbooth: Personalized text-to-image generation without test-time finetuning. CVPR 2024. Zhang, B., Duan, Y., Lan, J., Hong, Y., Zhu, H., Wang, W. and Niu, L., 2023. Controlcom: Controllable image composition using diffusion model. arXiv preprint arXiv:2308.10040. Lu, S., Liu, Y. and Kong, A.W.K., 2023. Tf-icon: Diffusion-based training-free cross-domain image composition. ICCV 2023.

4. Related works - common limitations

- Trade-off between identity and diversity
- Their capacity for geometric correction / 3D rotation is significantly limited

' a professional photograph of a teddy bear, ultra realistic'

' a professional photograph of a mailbox on the grass, ultra realistic'

5. Approaches - dataset

- Paired data from video datasets (VIPSeg, YoutubeVOS, PPR10K, MVImgNet)
- Training pair generation: randomly select frame a as input and frame b as target

frames

Datasets	Pixabay	VIPSeg	YoutubeVOS	PPR10K
Training	116,820	51,743	42,868	6,020
Validation	6,490	5,487	3,690	102

5. Approaches - pipeline

- Decouple the compositing task into two stages: identity preserving and background alignment
- A new image encoder to learn *id-preserving embedding*

5. Approaches - pipeline

• A new image encoder to learn *id-preserving embedding*

5. Approaches - pipeline

• use DINOv2 (before and after 1st stage) to predict embeddings of different views of 20 Objaverse objects; the embeddings are then clustered

5. Approaches - mask control

- Train with 4 levels of coarse masks
- Depending on the shape of the coarse mask, it can operate different types of editing, including changing the view of an object, and applying non-rigid transformation

6. Evaluation

- Quantitative evaluation: tested on DreamBooth objects
- User study: user preference on pairwise comparisons

Method	FID \downarrow	CLIP-score ↑		DINO-score	† Drea	DreamSim ↓		
PbE	-	71.5000		31.3765	0.4	4954		
OS	-	73.6250		32.9739	0.4297			
T-I	-	75.1250		39.2863	0.3661			
Ours	-	77.0625		43.4463	0.2898			
PbE	23.2663	93.6250		85.2260	0.1907			
OS	22.4934	94.9375		90.3853	0.1422			
T-I	63.9730	88.3125		88.3125		73.2155	0.3219	
Ours	16.4487	96.1875		94.705	0.0831			
	Ours	OS	Ours	PbE	Ours	T-I		
Realism	50.68	49.32	62.84	4 37.16	53.38	46.62		
Fidelity	80.41	19.59	86.49	9 13.51	73.65	26.35		

7. Future work

- Degradation in large 3D transformations
- Artifacts in texts / human faces

Thank you!