
MaxQ: Multi-Axis Query for N:M Sparsity
Network

Jingyang Xiang1, Siqi Li1, JunHao Chen1, Zhuangzhi Chen2,
Tianxin Huang1, Linpeng Peng1, Yong Liu1

APRIL Lab, Zhejiang University, Hangzhou, China1

IVSN, Zhejiang University of Technology, Hangzhou, China2

https://github.com/JingyangXiang/MaxQ

https://github.com/JingyangXiang/MaxQ

Overview: N:M Sparsity

Deploy Deploy Deploy Deploy

None-zero
data

None-zero
data

None-zero
data

None-zero
data

IndptrIndices Indices Indices

(a) Unstructured
weight pruning

(b) Structured filter
pruning

(c) N:M weight
pruning

(d) 1xN weight
pruning

Unstructured sparse
weight

Structured sparse
filter

N:M structured
sparse weight

1xN structured
sparse weight

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

The relative weight
importance among

blocks?

Problem.1

Take Weight Importance into Account

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

Multi-Axis Query

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

0.250.08 0.38 0.99

0.34300.0871 0.6570 0.9988

1. Apply sparsity

0.250.08 0.38 0.99

0.34300.0871 0.6570 0.9988

Figure 3. The process of computing soft masks. The weights of the
model are sorted in descending order based on their magnitudes for
clear understanding. We assume pN, p, ⌧q “ p4, 0.5, 0.1q.

To represent the importance of the weights in the N:M
sparse pattern, we first relax the constrain of the binary ma-
trix bl to sl P tx|x • 0uGlˆM . Then, the optimization
objective can be rewritten as:

min
M,S

LpM ¨ S;Dq s.t.}slgl,:}0 § N (2)

It can be seen as replacing the previous hard mask bl

with a soft mask sl. sl satisfies the N:M sparse pattern and
can be folded into the network as constants, which will not
cause any distortion to the sparse pattern and introduce any
extra cost during the runtime.

To get the value of sl, we propose MaxQ to measure the
importance of weights. As shown in Fig. 2, MaxQ can be
divided into two parts in what follows.
Part 1: Apply N:M Sparsity.

First, for l-th layer, we init all elements in b
l to 1. For

t-th epoch, we sort each element in ml
g according to it ab-

solute value and sort the ml according to it’s `1-norm to
identify the set of blocks to apply N:M sparsity:

Ml
g “ ArgTopKM-N

`
´

ˇ̌
ml

g,:

ˇ̌˘

T l
t “ ArgTopKrGl�ts

´!››ml
g

››
1

)¯ (3)

where Ml P RGlˆpM´Nq, T l
k P RrGl�ts and �t repre-

sents the percentage of weight blocks to apply N:M spar-
sity, which gives the indices of weights with the pM ´ Nq
smallest absolute value in each block and blocks with the
top

P
Gl�t

T
value in `1-norm respectively. Then we prune

the weight by zeroizing

b
l
i,j |i P T l

t , j P Ml
i

(
.

Part 2: Measure Importance. We show our function S “
GpV, p, ⌧q to measure weight importance. Give a vector
V P RN and a sparse rate p, we get the threshold � by

$
’&

’%

�h “ min ptopK pabspV q, p1 ´ pq ¨ Nqq
�l “ max ptopK p´abspV q, p ¨ Nqq
� “ pabsp�hq ` absp�lqq {2

(4)

Then, we measure weight importance with sigmoid:

si “ sigmoid pp|vi| ´ �q {⌧q (5)

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

Figure 4. MaxQ to generate soft masks.

where i “ 1, 2, ..., N and ⌧ is the global temperature pa-
rameter to control the level of softness in the masks. Fig. 3
shows the process when pN, p, ⌧q “ p4, 0.5, 0.1q.

To measure the weight importance among the blocks, we
query the weight along filter axis and kernel axis to generate
corresponding soft masks:

s
lpfq
i,:,:,: “

`
G

`
wl

i,:,:,:, pM ´ Nq {M, ⌧
˘˘

s
lpkq
:,:,k1,k2

“
`
G

`
wl

:,:,k1,k2
, pM ´ Nq {M, ⌧

˘˘ (6)

where i “ 1, 2, ..., Cl
out, k1 “ 1, ...,Kl

h and k2 “ 1, ...,Kl
w.

We rearrange (RA) the s
lpfq

and s
lpkq

to match the shape
of bl and obtain the soft mask as shown in Fig. 4:

sl “ bl ` bl d RAps
lpfq q ` bl d RAps

lpkq q
“ bl d

´
1 ` RAps

lpfq q ` RAps
lpkq q

¯ (7)

It is worth noting s
l can be precomputed. Meanwhile, since

b
l satisfies the N:M sparse pattern, s

l will also satisfy this
pattern. Therefore, MaxQ will not bring any additional
overhead during the runtime compared to the conventional
N:M sparsity network.

3.3. Incremental Sparsity

Previous methods fixed �t to 1 throughout the training pro-
cess, which means the whole network is in N:M sparse pat-
tern from the beginning of training. It will cause severe in-
formation loss and is detrimental to network convergence.

To this end, incremental sparsity, which gradually in-
creases the sparse ratio based on the current epoch/step, has
been shown to be an effective technique to heal sparse net-
works from pruning and improve their performance. For un-
structured sparsity, incremental sparsity can be achieved by
gradually removing a single weight; for structured sparsity,
it can be achieved by removing the channels across layers.
Since networks often have a large number of parameters and
channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by

4

2. Measure importance

0.250.08 0.38 0.99

0.34300.0871 0.6570 0.9988

Figure 3. The process of computing soft masks. The weights of the
model are sorted in descending order based on their magnitudes for
clear understanding. We assume pN, p, ⌧q “ p4, 0.5, 0.1q.

To represent the importance of the weights in the N:M
sparse pattern, we first relax the constrain of the binary ma-
trix bl to sl P tx|x • 0uGlˆM . Then, the optimization
objective can be rewritten as:

min
M,S

LpM ¨ S;Dq s.t.}slgl,:}0 § N (2)

It can be seen as replacing the previous hard mask bl

with a soft mask sl. sl satisfies the N:M sparse pattern and
can be folded into the network as constants, which will not
cause any distortion to the sparse pattern and introduce any
extra cost during the runtime.

To get the value of sl, we propose MaxQ to measure the
importance of weights. As shown in Fig. 2, MaxQ can be
divided into two parts in what follows.
Part 1: Apply N:M Sparsity.

First, for l-th layer, we init all elements in b
l to 1. For

t-th epoch, we sort each element in ml
g according to it ab-

solute value and sort the ml according to it’s `1-norm to
identify the set of blocks to apply N:M sparsity:

Ml
g “ ArgTopKM-N

`
´

ˇ̌
ml

g,:

ˇ̌˘

T l
t “ ArgTopKrGl�ts

´!››ml
g

››
1

)¯ (3)

where Ml P RGlˆpM´Nq, T l
k P RrGl�ts and �t repre-

sents the percentage of weight blocks to apply N:M spar-
sity, which gives the indices of weights with the pM ´ Nq
smallest absolute value in each block and blocks with the
top

P
Gl�t

T
value in `1-norm respectively. Then we prune

the weight by zeroizing

b
l
i,j |i P T l

t , j P Ml
i

(
.

Part 2: Measure Importance. We show our function S “
GpV, p, ⌧q to measure weight importance. Give a vector
V P RN and a sparse rate p, we get the threshold � by

$
’&

’%

�h “ min ptopK pabspV q, p1 ´ pq ¨ Nqq
�l “ max ptopK p´abspV q, p ¨ Nqq
� “ pabsp�hq ` absp�lqq {2

(4)

Then, we measure weight importance with sigmoid:

si “ sigmoid pp|vi| ´ �q {⌧q (5)

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

Figure 4. MaxQ to generate soft masks.

where i “ 1, 2, ..., N and ⌧ is the global temperature pa-
rameter to control the level of softness in the masks. Fig. 3
shows the process when pN, p, ⌧q “ p4, 0.5, 0.1q.

To measure the weight importance among the blocks, we
query the weight along filter axis and kernel axis to generate
corresponding soft masks:

s
lpfq
i,:,:,: “

`
G

`
wl

i,:,:,:, pM ´ Nq {M, ⌧
˘˘

s
lpkq
:,:,k1,k2

“
`
G

`
wl

:,:,k1,k2
, pM ´ Nq {M, ⌧

˘˘ (6)

where i “ 1, 2, ..., Cl
out, k1 “ 1, ...,Kl

h and k2 “ 1, ...,Kl
w.

We rearrange (RA) the s
lpfq

and s
lpkq

to match the shape
of bl and obtain the soft mask as shown in Fig. 4:

sl “ bl ` bl d RAps
lpfq q ` bl d RAps

lpkq q
“ bl d

´
1 ` RAps

lpfq q ` RAps
lpkq q

¯ (7)

It is worth noting s
l can be precomputed. Meanwhile, since

b
l satisfies the N:M sparse pattern, s

l will also satisfy this
pattern. Therefore, MaxQ will not bring any additional
overhead during the runtime compared to the conventional
N:M sparsity network.

3.3. Incremental Sparsity

Previous methods fixed �t to 1 throughout the training pro-
cess, which means the whole network is in N:M sparse pat-
tern from the beginning of training. It will cause severe in-
formation loss and is detrimental to network convergence.

To this end, incremental sparsity, which gradually in-
creases the sparse ratio based on the current epoch/step, has
been shown to be an effective technique to heal sparse net-
works from pruning and improve their performance. For un-
structured sparsity, incremental sparsity can be achieved by
gradually removing a single weight; for structured sparsity,
it can be achieved by removing the channels across layers.
Since networks often have a large number of parameters and
channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by

4

0.250.08 0.38 0.99

0.34300.0871 0.6570 0.9988

Figure 3. The process of computing soft masks. The weights of the
model are sorted in descending order based on their magnitudes for
clear understanding. We assume pN, p, ⌧q “ p4, 0.5, 0.1q.

To represent the importance of the weights in the N:M
sparse pattern, we first relax the constrain of the binary ma-
trix bl to sl P tx|x • 0uGlˆM . Then, the optimization
objective can be rewritten as:

min
M,S

LpM ¨ S;Dq s.t.}slgl,:}0 § N (2)

It can be seen as replacing the previous hard mask bl

with a soft mask sl. sl satisfies the N:M sparse pattern and
can be folded into the network as constants, which will not
cause any distortion to the sparse pattern and introduce any
extra cost during the runtime.

To get the value of sl, we propose MaxQ to measure the
importance of weights. As shown in Fig. 2, MaxQ can be
divided into two parts in what follows.
Part 1: Apply N:M Sparsity.

First, for l-th layer, we init all elements in b
l to 1. For

t-th epoch, we sort each element in ml
g according to it ab-

solute value and sort the ml according to it’s `1-norm to
identify the set of blocks to apply N:M sparsity:

Ml
g “ ArgTopKM-N

`
´

ˇ̌
ml

g,:

ˇ̌˘

T l
t “ ArgTopKrGl�ts

´!››ml
g

››
1

)¯ (3)

where Ml P RGlˆpM´Nq, T l
k P RrGl�ts and �t repre-

sents the percentage of weight blocks to apply N:M spar-
sity, which gives the indices of weights with the pM ´ Nq
smallest absolute value in each block and blocks with the
top

P
Gl�t

T
value in `1-norm respectively. Then we prune

the weight by zeroizing

b
l
i,j |i P T l

t , j P Ml
i

(
.

Part 2: Measure Importance. We show our function S “
GpV, p, ⌧q to measure weight importance. Give a vector
V P RN and a sparse rate p, we get the threshold � by

$
’&

’%

�h “ min ptopK pabspV q, p1 ´ pq ¨ Nqq
�l “ max ptopK p´abspV q, p ¨ Nqq
� “ pabsp�hq ` absp�lqq {2

(4)

Then, we measure weight importance with sigmoid:

si “ sigmoid pp|vi| ´ �q {⌧q (5)

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

Figure 4. MaxQ to generate soft masks.

where i “ 1, 2, ..., N and ⌧ is the global temperature pa-
rameter to control the level of softness in the masks. Fig. 3
shows the process when pN, p, ⌧q “ p4, 0.5, 0.1q.

To measure the weight importance among the blocks, we
query the weight along filter axis and kernel axis to generate
corresponding soft masks:

s
lpfq
i,:,:,: “

`
G

`
wl

i,:,:,:, pM ´ Nq {M, ⌧
˘˘

s
lpkq
:,:,k1,k2

“
`
G

`
wl

:,:,k1,k2
, pM ´ Nq {M, ⌧

˘˘ (6)

where i “ 1, 2, ..., Cl
out, k1 “ 1, ...,Kl

h and k2 “ 1, ...,Kl
w.

We rearrange (RA) the s
lpfq

and s
lpkq

to match the shape
of bl and obtain the soft mask as shown in Fig. 4:

sl “ bl ` bl d RAps
lpfq q ` bl d RAps

lpkq q
“ bl d

´
1 ` RAps

lpfq q ` RAps
lpkq q

¯ (7)

It is worth noting s
l can be precomputed. Meanwhile, since

b
l satisfies the N:M sparse pattern, s

l will also satisfy this
pattern. Therefore, MaxQ will not bring any additional
overhead during the runtime compared to the conventional
N:M sparsity network.

3.3. Incremental Sparsity

Previous methods fixed �t to 1 throughout the training pro-
cess, which means the whole network is in N:M sparse pat-
tern from the beginning of training. It will cause severe in-
formation loss and is detrimental to network convergence.

To this end, incremental sparsity, which gradually in-
creases the sparse ratio based on the current epoch/step, has
been shown to be an effective technique to heal sparse net-
works from pruning and improve their performance. For un-
structured sparsity, incremental sparsity can be achieved by
gradually removing a single weight; for structured sparsity,
it can be achieved by removing the channels across layers.
Since networks often have a large number of parameters and
channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by

4

0.250.08 0.38 0.99

0.34300.0871 0.6570 0.9988

Figure 3. The process of computing soft masks. The weights of the
model are sorted in descending order based on their magnitudes for
clear understanding. We assume pN, p, ⌧q “ p4, 0.5, 0.1q.

To represent the importance of the weights in the N:M
sparse pattern, we first relax the constrain of the binary ma-
trix bl to sl P tx|x • 0uGlˆM . Then, the optimization
objective can be rewritten as:

min
M,S

LpM ¨ S;Dq s.t.}slgl,:}0 § N (2)

It can be seen as replacing the previous hard mask bl

with a soft mask sl. sl satisfies the N:M sparse pattern and
can be folded into the network as constants, which will not
cause any distortion to the sparse pattern and introduce any
extra cost during the runtime.

To get the value of sl, we propose MaxQ to measure the
importance of weights. As shown in Fig. 2, MaxQ can be
divided into two parts in what follows.
Part 1: Apply N:M Sparsity.

First, for l-th layer, we init all elements in b
l to 1. For

t-th epoch, we sort each element in ml
g according to it ab-

solute value and sort the ml according to it’s `1-norm to
identify the set of blocks to apply N:M sparsity:

Ml
g “ ArgTopKM-N

`
´

ˇ̌
ml

g,:

ˇ̌˘

T l
t “ ArgTopKrGl�ts

´!››ml
g

››
1

)¯ (3)

where Ml P RGlˆpM´Nq, T l
k P RrGl�ts and �t repre-

sents the percentage of weight blocks to apply N:M spar-
sity, which gives the indices of weights with the pM ´ Nq
smallest absolute value in each block and blocks with the
top

P
Gl�t

T
value in `1-norm respectively. Then we prune

the weight by zeroizing

b
l
i,j |i P T l

t , j P Ml
i

(
.

Part 2: Measure Importance. We show our function S “
GpV, p, ⌧q to measure weight importance. Give a vector
V P RN and a sparse rate p, we get the threshold � by

$
’&

’%

�h “ min ptopK pabspV q, p1 ´ pq ¨ Nqq
�l “ max ptopK p´abspV q, p ¨ Nqq
� “ pabsp�hq ` absp�lqq {2

(4)

Then, we measure weight importance with sigmoid:

si “ sigmoid pp|vi| ´ �q {⌧q (5)

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

Figure 4. MaxQ to generate soft masks.

where i “ 1, 2, ..., N and ⌧ is the global temperature pa-
rameter to control the level of softness in the masks. Fig. 3
shows the process when pN, p, ⌧q “ p4, 0.5, 0.1q.

To measure the weight importance among the blocks, we
query the weight along filter axis and kernel axis to generate
corresponding soft masks:

s
lpfq
i,:,:,: “

`
G

`
wl

i,:,:,:, pM ´ Nq {M, ⌧
˘˘

s
lpkq
:,:,k1,k2

“
`
G

`
wl

:,:,k1,k2
, pM ´ Nq {M, ⌧

˘˘ (6)

where i “ 1, 2, ..., Cl
out, k1 “ 1, ...,Kl

h and k2 “ 1, ...,Kl
w.

We rearrange (RA) the s
lpfq

and s
lpkq

to match the shape
of bl and obtain the soft mask as shown in Fig. 4:

sl “ bl ` bl d RAps
lpfq q ` bl d RAps

lpkq q
“ bl d

´
1 ` RAps

lpfq q ` RAps
lpkq q

¯ (7)

It is worth noting s
l can be precomputed. Meanwhile, since

b
l satisfies the N:M sparse pattern, s

l will also satisfy this
pattern. Therefore, MaxQ will not bring any additional
overhead during the runtime compared to the conventional
N:M sparsity network.

3.3. Incremental Sparsity

Previous methods fixed �t to 1 throughout the training pro-
cess, which means the whole network is in N:M sparse pat-
tern from the beginning of training. It will cause severe in-
formation loss and is detrimental to network convergence.

To this end, incremental sparsity, which gradually in-
creases the sparse ratio based on the current epoch/step, has
been shown to be an effective technique to heal sparse net-
works from pruning and improve their performance. For un-
structured sparsity, incremental sparsity can be achieved by
gradually removing a single weight; for structured sparsity,
it can be achieved by removing the channels across layers.
Since networks often have a large number of parameters and
channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by

4

zeroizing

0.250.08 0.38 0.99

0.34300.0871 0.6570 0.9988

Figure 3. The process of computing soft masks. The weights of the
model are sorted in descending order based on their magnitudes for
clear understanding. We assume pN, p, ⌧q “ p4, 0.5, 0.1q.

To represent the importance of the weights in the N:M
sparse pattern, we first relax the constrain of the binary ma-
trix bl to sl P tx|x • 0uGlˆM . Then, the optimization
objective can be rewritten as:

min
M,S

LpM ¨ S;Dq s.t.}slgl,:}0 § N (2)

It can be seen as replacing the previous hard mask bl

with a soft mask sl. sl satisfies the N:M sparse pattern and
can be folded into the network as constants, which will not
cause any distortion to the sparse pattern and introduce any
extra cost during the runtime.

To get the value of sl, we propose MaxQ to measure the
importance of weights. As shown in Fig. 2, MaxQ can be
divided into two parts in what follows.
Part 1: Apply N:M Sparsity.

First, for l-th layer, we init all elements in b
l to 1. For

t-th epoch, we sort each element in ml
g according to it ab-

solute value and sort the ml according to it’s `1-norm to
identify the set of blocks to apply N:M sparsity:

Ml
g “ ArgTopKM-N

`
´

ˇ̌
ml

g,:

ˇ̌˘

T l
t “ ArgTopKrGl�ts

´!››ml
g

››
1

)¯ (3)

where Ml P RGlˆpM´Nq, T l
k P RrGl�ts and �t repre-

sents the percentage of weight blocks to apply N:M spar-
sity, which gives the indices of weights with the pM ´ Nq
smallest absolute value in each block and blocks with the
top

P
Gl�t

T
value in `1-norm respectively. Then we prune

the weight by zeroizing

b
l
i,j |i P T l

t , j P Ml
i

(
.

Part 2: Measure Importance. We show our function S “
GpV, p, ⌧q to measure weight importance. Give a vector
V P RN and a sparse rate p, we get the threshold � by

$
’&

’%

�h “ min ptopK pabspV q, p1 ´ pq ¨ Nqq
�l “ max ptopK p´abspV q, p ¨ Nqq
� “ pabsp�hq ` absp�lqq {2

(4)

Then, we measure weight importance with sigmoid:

si “ sigmoid pp|vi| ´ �q {⌧q (5)

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

Figure 4. MaxQ to generate soft masks.

where i “ 1, 2, ..., N and ⌧ is the global temperature pa-
rameter to control the level of softness in the masks. Fig. 3
shows the process when pN, p, ⌧q “ p4, 0.5, 0.1q.

To measure the weight importance among the blocks, we
query the weight along filter axis and kernel axis to generate
corresponding soft masks:

s
lpfq
i,:,:,: “

`
G

`
wl

i,:,:,:, pM ´ Nq {M, ⌧
˘˘

s
lpkq
:,:,k1,k2

“
`
G

`
wl

:,:,k1,k2
, pM ´ Nq {M, ⌧

˘˘ (6)

where i “ 1, 2, ..., Cl
out, k1 “ 1, ...,Kl

h and k2 “ 1, ...,Kl
w.

We rearrange (RA) the s
lpfq

and s
lpkq

to match the shape
of bl and obtain the soft mask as shown in Fig. 4:

sl “ bl ` bl d RAps
lpfq q ` bl d RAps

lpkq q
“ bl d

´
1 ` RAps

lpfq q ` RAps
lpkq q

¯ (7)

It is worth noting s
l can be precomputed. Meanwhile, since

b
l satisfies the N:M sparse pattern, s

l will also satisfy this
pattern. Therefore, MaxQ will not bring any additional
overhead during the runtime compared to the conventional
N:M sparsity network.

3.3. Incremental Sparsity

Previous methods fixed �t to 1 throughout the training pro-
cess, which means the whole network is in N:M sparse pat-
tern from the beginning of training. It will cause severe in-
formation loss and is detrimental to network convergence.

To this end, incremental sparsity, which gradually in-
creases the sparse ratio based on the current epoch/step, has
been shown to be an effective technique to heal sparse net-
works from pruning and improve their performance. For un-
structured sparsity, incremental sparsity can be achieved by
gradually removing a single weight; for structured sparsity,
it can be achieved by removing the channels across layers.
Since networks often have a large number of parameters and
channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by

4

0.250.08 0.38 0.99

0.34300.0871 0.6570 0.9988

Figure 3. The process of computing soft masks. The weights of the
model are sorted in descending order based on their magnitudes for
clear understanding. We assume pN, p, ⌧q “ p4, 0.5, 0.1q.

To represent the importance of the weights in the N:M
sparse pattern, we first relax the constrain of the binary ma-
trix bl to sl P tx|x • 0uGlˆM . Then, the optimization
objective can be rewritten as:

min
M,S

LpM ¨ S;Dq s.t.}slgl,:}0 § N (2)

It can be seen as replacing the previous hard mask bl

with a soft mask sl. sl satisfies the N:M sparse pattern and
can be folded into the network as constants, which will not
cause any distortion to the sparse pattern and introduce any
extra cost during the runtime.

To get the value of sl, we propose MaxQ to measure the
importance of weights. As shown in Fig. 2, MaxQ can be
divided into two parts in what follows.
Part 1: Apply N:M Sparsity.

First, for l-th layer, we init all elements in b
l to 1. For

t-th epoch, we sort each element in ml
g according to it ab-

solute value and sort the ml according to it’s `1-norm to
identify the set of blocks to apply N:M sparsity:

Ml
g “ ArgTopKM-N

`
´

ˇ̌
ml

g,:

ˇ̌˘

T l
t “ ArgTopKrGl�ts

´!››ml
g

››
1

)¯ (3)

where Ml P RGlˆpM´Nq, T l
k P RrGl�ts and �t repre-

sents the percentage of weight blocks to apply N:M spar-
sity, which gives the indices of weights with the pM ´ Nq
smallest absolute value in each block and blocks with the
top

P
Gl�t

T
value in `1-norm respectively. Then we prune

the weight by zeroizing

b
l
i,j |i P T l

t , j P Ml
i

(
.

Part 2: Measure Importance. We show our function S “
GpV, p, ⌧q to measure weight importance. Give a vector
V P RN and a sparse rate p, we get the threshold � by

$
’&

’%

�h “ min ptopK pabspV q, p1 ´ pq ¨ Nqq
�l “ max ptopK p´abspV q, p ¨ Nqq
� “ pabsp�hq ` absp�lqq {2

(4)

Then, we measure weight importance with sigmoid:

si “ sigmoid pp|vi| ´ �q {⌧q (5)

mask

Hard N:M Mask Soft N:M Mask

0 2.5 0 1.1

0 01.3 2.9

0 02.21.9

1.5 2.600

mask

0 1 0 1

0 01 1

0 011

1 100

Multi-Axis QueryN:M Query

Prune the value Keep the valueWeight Element-wise multiplication

Figure 4. MaxQ to generate soft masks.

where i “ 1, 2, ..., N and ⌧ is the global temperature pa-
rameter to control the level of softness in the masks. Fig. 3
shows the process when pN, p, ⌧q “ p4, 0.5, 0.1q.

To measure the weight importance among the blocks, we
query the weight along filter axis and kernel axis to generate
corresponding soft masks:

s
lpfq
i,:,:,: “

`
G

`
wl

i,:,:,:, pM ´ Nq {M, ⌧
˘˘

s
lpkq
:,:,k1,k2

“
`
G

`
wl

:,:,k1,k2
, pM ´ Nq {M, ⌧

˘˘ (6)

where i “ 1, 2, ..., Cl
out, k1 “ 1, ...,Kl

h and k2 “ 1, ...,Kl
w.

We rearrange (RA) the s
lpfq

and s
lpkq

to match the shape
of bl and obtain the soft mask as shown in Fig. 4:

sl “ bl ` bl d RAps
lpfq q ` bl d RAps

lpkq q
“ bl d

´
1 ` RAps

lpfq q ` RAps
lpkq q

¯ (7)

It is worth noting s
l can be precomputed. Meanwhile, since

b
l satisfies the N:M sparse pattern, s

l will also satisfy this
pattern. Therefore, MaxQ will not bring any additional
overhead during the runtime compared to the conventional
N:M sparsity network.

3.3. Incremental Sparsity

Previous methods fixed �t to 1 throughout the training pro-
cess, which means the whole network is in N:M sparse pat-
tern from the beginning of training. It will cause severe in-
formation loss and is detrimental to network convergence.

To this end, incremental sparsity, which gradually in-
creases the sparse ratio based on the current epoch/step, has
been shown to be an effective technique to heal sparse net-
works from pruning and improve their performance. For un-
structured sparsity, incremental sparsity can be achieved by
gradually removing a single weight; for structured sparsity,
it can be achieved by removing the channels across layers.
Since networks often have a large number of parameters and
channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by

4

Overview: Sparsity Strategy
Step-1 Step-2 Step-3

Step-1 Step-2 Step-3

N-M

Reverse

Step-1 Step-2 Step-3

Default

-norm

More intermediate states

Purpose: Smoother training process.

Unstable Incremental Sparsity StrategyProblem.2

Incremental Sparsity Strategy

Algorithm 1: Overview of the MaxQ method.
1 Input: An L-layer CNN model with weights

W “ tw1, ...,wLu; target sparse pattern N:M; total
training epochs Ttotal; initial and final epoch for
incremental pruning ti, tf ; training set D ;

2 Output: A sub-model satisfying the target sparse pattern
N, M and its optimal weight values W˚;

3 Randomly initialize the model weights W;
4 Rearrange the model weights W to M ;
5 for each training epoch t P r1, ..., Ttotals do

6 Compute the percentage of N:M blocks �t via Eq. (8);
7 for each mini-batch P D do

8 for l P r1, ..., Ls do

9 Reset

bl
i,j |@i,@j(

to 1 ;
10 Get the indices Ml and T l

t via Eq. (3) ;
11 Set

b
l
i,j |i P T l

t , j P Ml
i

(
to 0 ;

12 Get the s
lpfq

and s
lpkq

via Eq. (4) „ Eq. (6) ;
13 Get the soft mask sl via Eq. (7)

14 Forward via Eq. (2) ;
15 Backward and update via the SGD optimizer ;

16 Compute M˚ “ tm
l ¨ s

l| @l u ;
17 Rearrange M˚ back to W˚ ;

simply reducing
››bl

g,:

››
0

from M to N , the sparse networks
will suffer critical performance degradation, especially at
high sparsity.

In this paper, we propose gradually increasing the per-
centage of N:M sparse blocks to achieve a smoother spar-
sity process. We apply the same sparse schedule for each
layer The percentage of N:M sparse blocks at the t-th train-
ing epoch is computed as:

�t “ minp1,maxp0, 1 ´ r1 ´ pt ´ tiq{ptf ´ tiqs3qq (8)

where ti and tf denote the beginning and ending epochs in
the incremental sparsity process. Specifically, if t is smaller
than ti, the network is trained in a dense state, and when
t is larger than tf , the network is trained in a N:M sparse
pattern. Notably, we firstly apply the N:M sparse pattern for
blocks with larger `1-norm because we find it can reduce the
performance degradation when the sparsity increases and
keep the convergence process stable. We conduct ablation
studies in Sec. 4.5 to show its advantage. As an algorithm
guideline, the pseudo-code of MaxQ is provided in Algo-
rithm 1.

4. Experiment

4.1. Experiment Settings

To validate the effectiveness of MaxQ, we conducted im-
age classification on ImageNet with heaveweight CNNs
ResNet34 [15], ResNet50 [15] and lightweight Mo-
bileNetV1 [21]. We compare MaxQ with N:M sparsity and
unstructured sparsity in Sec. 4.2 and Sec. 4.3, respectively.

Model Method N:M Top-1 Epochs FLOPs Params

ResNet34

Baseline - 74.6% 120 3.67G 21.8M

ASP 1:4 70.9% 200 1.01G 5.85M
SR-STE 1:4 73.8% 120 1.01G 5.85M
LBC 1:4 73.7% 120 1.01G 5.85M
MaxQ 1:4 74.2% 120 1.01G 5.85M

ASP 2:4 73.9% 200 1.90G 11.2M
SR-STE 2:4 74.3% 120 1.90G 11.2M
LBC 2:4 74.1% 120 1.90G 11.2M
MaxQ 2:4 74.5% 120 1.90G 11.2M

ResNet50

Baseline - 77.3% 120 4.11G 25.6M

ASP 2:4 77.4% 200 2.12G 13.8M
SR-STE 2:4 77.0% 120 2.12G 13.8M
LBC 2:4 77.2% 120 2.12G 13.8M
MaxQ 2:4 77.6% 120 2.12G 13.8M

ASP 1:4 76.5% 200 1.11G 7.93M
SR-STE 1:4 75.3% 120 1.11G 7.93M
LBC 1:4 75.9% 120 1.11G 7.93M
MaxQ 1:4 77.3% 120 1.11G 7.93M

ASP 2:8 76.6% 200 1.11G 7.93M
SR-STE 2:8 76.2% 120 1.11G 7.93M
LBC 2:8 76.5% 120 1.11G 7.93M
MaxQ 2:8 77.2% 120 1.11G 7.93M

ASP 1:16 71.5% 200 0.44G 3.52M
SR-STE 1:16 71.5% 120 0.44G 3.52M
LBC 1:16 71.8% 120 0.44G 3.52M
MaxQ 1:16 74.6% 120 0.44G 3.52M

Table 2. Results of the different N:M sparsity training methods for
ResNet34 and ResNet50 on ImageNet.

Model Method N:M Top-1 Epochs FLOPs Params

MobileNetV1

Baseline - 71.9% 120 578M 4.23M

ASP 2:4 70.4% 200 302M 2.66M
SR-STE 2:4 71.5% 120 302M 2.66M
MaxQ 2:4 72.1% 120 302M 2.66M

ASP 1:4 65.4% 200 164M 1.88M
SR-STE 1:4 67.8% 120 164M 1.88M
MaxQ 1:4 68.5% 120 164M 1.88M

Table 3. Results of the different N:M sparsity training methods for
lightweight model MobileNetV1 on ImageNet.

We also conducted object detection and semantic segmenta-
tion on the COCO [27] benchmark with Faster-RCNN [31]
and Mask-RCNN [16] in Sec. 4.4. All experiments are im-
plemented on PyTorch with NVIDIA RTX 3090 and trained
with the same configurations as previous work [1, 37] to
make a fair comparison. ti and tf are set to 0 and 3/4 of the
total training epochs respectively. Ablation studies about
components, ti and tf and strategy for incremental spar-
sity are demonstrated in Sec. 4.5. Performance analysis is
shown in Sec. 4.6.

4.2. Comparison with N:M sparsity

We first apply our MaxQ to ResNet34 and ResNet50 to val-
idate its effectiveness. As shown in Tab. 2, MaxQ leads all
N:M sparse patterns and networks. For ResNet34, MaxQ
outperforms SR-STE [1] and LBC [37] at 1:4 sparse pat-
tern at the top-1 accuracy by 0.4% and 0.5% respectively.
For ResNet50, MaxQ achieves similar improvement at 1:4

5

N:M Sparse Blocks Ratio

Our sparsity strategy achieves a smoother training process.

Step-1 Step-2 Step-3

Step-1 Step-2 Step-3

N-M

Reverse

Step-1 Step-2 Step-3

Default

-norm

More intermediate states

Step-1 Step-2 Step-3

Step-1 Step-2 Step-3

N-M

Reverse

Step-1 Step-2 Step-3

Default

-norm

More intermediate states

Results ResNet50 Pareto

Results ImageNet1K
Algorithm 1: Overview of the MaxQ method.

1 Input: An L-layer CNN model with weights
W “ tw1, ...,wLu; target sparse pattern N:M; total
training epochs Ttotal; initial and final epoch for
incremental pruning ti, tf ; training set D ;

2 Output: A sub-model satisfying the target sparse pattern
N, M and its optimal weight values W˚;

3 Randomly initialize the model weights W;
4 Rearrange the model weights W to M ;
5 for each training epoch t P r1, ..., Ttotals do

6 Compute the percentage of N:M blocks �t via Eq. (8);
7 for each mini-batch P D do

8 for l P r1, ..., Ls do

9 Reset

bl
i,j |@i,@j(

to 1 ;
10 Get the indices Ml and T l

t via Eq. (3) ;
11 Set

b
l
i,j |i P T l

t , j P Ml
i

(
to 0 ;

12 Get the s
lpfq

and s
lpkq

via Eq. (4) „ Eq. (6) ;
13 Get the soft mask sl via Eq. (7)

14 Forward via Eq. (2) ;
15 Backward and update via the SGD optimizer ;

16 Compute M˚ “ tm
l ¨ s

l| @l u ;
17 Rearrange M˚ back to W˚ ;

channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by
simply reducing

››bl
g,:

››
0

from M to N , the sparse networks
will suffer critical performance degradation, especially at
high sparsity.

In this paper, we propose gradually increasing the per-
centage of N:M sparse blocks to achieve a smoother spar-
sity process. We apply the same sparse schedule for each
layer The percentage of N:M sparse blocks at the t-th train-
ing epoch is computed as:

�t “ minp1,maxp0, 1 ´ r1 ´ pt ´ tiq{ptf ´ tiqs3qq (8)

where ti and tf denote the beginning and ending epochs in
the incremental sparsity process. Specifically, if t is smaller
than ti, the network is trained in a dense state, and when
t is larger than tf , the network is trained in a N:M sparse
pattern. Notably, we firstly apply the N:M sparse pattern for
blocks with larger `1-norm because we find it can reduce the
performance degradation when the sparsity increases and
keep the convergence process stable. We conduct ablation
studies in Sec. 4.5 to show its advantage. As an algorithm
guideline, the pseudo-code of MaxQ is provided in Algo-
rithm 1.

4. Experiment

4.1. Experiment Settings

To validate the effectiveness of MaxQ, we conducted im-
age classification on ImageNet with heaveweight CNNs

Model Method N:M Top-1 Epochs FLOPs Params

ResNet34

Baseline - 74.6% 120 3.67G 21.8M

ASP 1:4 70.9% 200 1.01G 5.85M
SR-STE 1:4 73.8% 120 1.01G 5.85M
LBC 1:4 73.7% 120 1.01G 5.85M
MaxQ 1:4 74.2% 120 1.01G 5.85M

ASP 2:4 73.9% 200 1.90G 11.2M
SR-STE 2:4 74.3% 120 1.90G 11.2M
LBC 2:4 74.1% 120 1.90G 11.2M
MaxQ 2:4 74.5% 120 1.90G 11.2M

ResNet50

Baseline - 77.3% 120 4.11G 25.6M

ASP 2:4 77.4% 200 2.12G 13.8M
SR-STE 2:4 77.0% 120 2.12G 13.8M
LBC 2:4 77.2% 120 2.12G 13.8M
MaxQ 2:4 77.6% 120 2.12G 13.8M

ASP 1:4 76.5% 200 1.11G 7.93M
SR-STE 1:4 75.3% 120 1.11G 7.93M
LBC 1:4 75.9% 120 1.11G 7.93M
MaxQ 1:4 77.3% 120 1.11G 7.93M

ASP 2:8 76.6% 200 1.11G 7.93M
SR-STE 2:8 76.2% 120 1.11G 7.93M
LBC 2:8 76.5% 120 1.11G 7.93M
MaxQ 2:8 77.2% 120 1.11G 7.93M

ASP 1:16 71.5% 200 0.44G 3.52M
SR-STE 1:16 71.5% 120 0.44G 3.52M
LBC 1:16 71.8% 120 0.44G 3.52M
MaxQ 1:16 74.6% 120 0.44G 3.52M

Table 2. Results of the different N:M sparsity training methods for
ResNet34 and ResNet50 on ImageNet.

Model Method N:M Top-1 Epochs FLOPs Params

MobileNetV1

Baseline - 71.9% 120 578M 4.23M

ASP 2:4 70.4% 200 302M 2.66M
SR-STE 2:4 71.5% 120 302M 2.66M
MaxQ 2:4 72.1% 120 302M 2.66M

ASP 1:4 65.4% 200 164M 1.88M
SR-STE 1:4 67.8% 120 164M 1.88M
MaxQ 1:4 68.5% 120 164M 1.88M

Table 3. Results of the different N:M sparsity training methods for
lightweight model MobileNetV1 on ImageNet.

ResNet34 [17], ResNet50 [17] and lightweight Mo-
bileNetV1 [24]. We compare MaxQ with N:M sparsity and
unstructured sparsity in Sec. 4.2 and Sec. 4.3, respectively.
We also conducted object detection and semantic segmenta-
tion on the COCO [32] benchmark with Faster-RCNN [38]
and Mask-RCNN [18] in Sec. 4.4. All experiments are im-
plemented on PyTorch with NVIDIA RTX 3090 and trained
with the same configurations as previous work [1, 44] to
make a fair comparison. ti and tf are set to 0 and 3/4 of the
total training epochs respectively. Ablation studies about
components, ti and tf and strategy for incremental spar-
sity are demonstrated in Sec. 4.5. Performance analysis is
shown in Sec. 4.6.

4.2. Comparison with N:M sparsity

We first apply our MaxQ to ResNet34 and ResNet50 to val-
idate its effectiveness. As shown in Tab. 2, MaxQ leads all
N:M sparse patterns and networks. For ResNet34, MaxQ

Algorithm 1: Overview of the MaxQ method.
1 Input: An L-layer CNN model with weights

W “ tw1, ...,wLu; target sparse pattern N:M; total
training epochs Ttotal; initial and final epoch for
incremental pruning ti, tf ; training set D ;

2 Output: A sub-model satisfying the target sparse pattern
N, M and its optimal weight values W˚;

3 Randomly initialize the model weights W;
4 Rearrange the model weights W to M ;
5 for each training epoch t P r1, ..., Ttotals do

6 Compute the percentage of N:M blocks �t via Eq. (8);
7 for each mini-batch P D do

8 for l P r1, ..., Ls do

9 Reset

bl
i,j |@i,@j(

to 1 ;
10 Get the indices Ml and T l

t via Eq. (3) ;
11 Set

b
l
i,j |i P T l

t , j P Ml
i

(
to 0 ;

12 Get the s
lpfq

and s
lpkq

via Eq. (4) „ Eq. (6) ;
13 Get the soft mask sl via Eq. (7)

14 Forward via Eq. (2) ;
15 Backward and update via the SGD optimizer ;

16 Compute M˚ “ tm
l ¨ s

l| @l u ;
17 Rearrange M˚ back to W˚ ;

channels, the sparsity process can be viewed as continuous.
Different from them, N:M sparse is characterized by several
M consecutive weight groups. If we increase the sparsity by
simply reducing

››bl
g,:

››
0

from M to N , the sparse networks
will suffer critical performance degradation, especially at
high sparsity.

In this paper, we propose gradually increasing the per-
centage of N:M sparse blocks to achieve a smoother spar-
sity process. We apply the same sparse schedule for each
layer The percentage of N:M sparse blocks at the t-th train-
ing epoch is computed as:

�t “ minp1,maxp0, 1 ´ r1 ´ pt ´ tiq{ptf ´ tiqs3qq (8)

where ti and tf denote the beginning and ending epochs in
the incremental sparsity process. Specifically, if t is smaller
than ti, the network is trained in a dense state, and when
t is larger than tf , the network is trained in a N:M sparse
pattern. Notably, we firstly apply the N:M sparse pattern for
blocks with larger `1-norm because we find it can reduce the
performance degradation when the sparsity increases and
keep the convergence process stable. We conduct ablation
studies in Sec. 4.5 to show its advantage. As an algorithm
guideline, the pseudo-code of MaxQ is provided in Algo-
rithm 1.

4. Experiment

4.1. Experiment Settings

To validate the effectiveness of MaxQ, we conducted im-
age classification on ImageNet with heaveweight CNNs

Model Method N:M Top-1 Epochs FLOPs Params

ResNet34

Baseline - 74.6% 120 3.67G 21.8M

ASP 1:4 70.9% 200 1.01G 5.85M
SR-STE 1:4 73.8% 120 1.01G 5.85M
LBC 1:4 73.7% 120 1.01G 5.85M
MaxQ 1:4 74.2% 120 1.01G 5.85M

ASP 2:4 73.9% 200 1.90G 11.2M
SR-STE 2:4 74.3% 120 1.90G 11.2M
LBC 2:4 74.1% 120 1.90G 11.2M
MaxQ 2:4 74.5% 120 1.90G 11.2M

ResNet50

Baseline - 77.3% 120 4.11G 25.6M

ASP 2:4 77.4% 200 2.12G 13.8M
SR-STE 2:4 77.0% 120 2.12G 13.8M
LBC 2:4 77.2% 120 2.12G 13.8M
MaxQ 2:4 77.6% 120 2.12G 13.8M

ASP 1:4 76.5% 200 1.11G 7.93M
SR-STE 1:4 75.3% 120 1.11G 7.93M
LBC 1:4 75.9% 120 1.11G 7.93M
MaxQ 1:4 77.3% 120 1.11G 7.93M

ASP 2:8 76.6% 200 1.11G 7.93M
SR-STE 2:8 76.2% 120 1.11G 7.93M
LBC 2:8 76.5% 120 1.11G 7.93M
MaxQ 2:8 77.2% 120 1.11G 7.93M

ASP 1:16 71.5% 200 0.44G 3.52M
SR-STE 1:16 71.5% 120 0.44G 3.52M
LBC 1:16 71.8% 120 0.44G 3.52M
MaxQ 1:16 74.6% 120 0.44G 3.52M

Table 2. Results of the different N:M sparsity training methods for
ResNet34 and ResNet50 on ImageNet.

Model Method N:M Top-1 Epochs FLOPs Params

MobileNetV1

Baseline - 71.9% 120 578M 4.23M

ASP 2:4 70.4% 200 302M 2.66M
SR-STE 2:4 71.5% 120 302M 2.66M
MaxQ 2:4 72.1% 120 302M 2.66M

ASP 1:4 65.4% 200 164M 1.88M
SR-STE 1:4 67.8% 120 164M 1.88M
MaxQ 1:4 68.5% 120 164M 1.88M

Table 3. Results of the different N:M sparsity training methods for
lightweight model MobileNetV1 on ImageNet.

ResNet34 [17], ResNet50 [17] and lightweight Mo-
bileNetV1 [24]. We compare MaxQ with N:M sparsity and
unstructured sparsity in Sec. 4.2 and Sec. 4.3, respectively.
We also conducted object detection and semantic segmenta-
tion on the COCO [32] benchmark with Faster-RCNN [38]
and Mask-RCNN [18] in Sec. 4.4. All experiments are im-
plemented on PyTorch with NVIDIA RTX 3090 and trained
with the same configurations as previous work [1, 44] to
make a fair comparison. ti and tf are set to 0 and 3/4 of the
total training epochs respectively. Ablation studies about
components, ti and tf and strategy for incremental spar-
sity are demonstrated in Sec. 4.5. Performance analysis is
shown in Sec. 4.6.

4.2. Comparison with N:M sparsity

We first apply our MaxQ to ResNet34 and ResNet50 to val-
idate its effectiveness. As shown in Tab. 2, MaxQ leads all
N:M sparse patterns and networks. For ResNet34, MaxQ

Method Top-1 Sparsity FLOPs Params S U

Baseline 77.3% 0.0 4.10G 25.6M - -

RigL [10] 74.6% 80 0.92G 5.12M 7 3
GMP [46] 75.6% 80 0.82G 5.12M 7 3
MAP [2] 75.9% 80 - 5.12M 7 7
STR [27] 76.2% 81 0.82G 5.12M 7 3

SR-STE 75.3% 1:4 1.13G 7.97M 3 3
LBC 75.9% 1:4 1.13G 7.97M 3 3
MaxQ 77.3% 1:4 1.13G 7.97M 3 3

SR-STE 76.2% 2:8 1.13G 7.97M 3 3
LBC 76.5% 2:8 1.13G 7.97M 3 3
MaxQ 77.2% 2:8 1.13G 7.97M 3 3

DNW [42] 68.3% 95 0.20G 1.28M 7 7
RigL [10] 70.0% 95 0.49G 1.28M 7 3
GMP [46] 70.6% 95 0.20G 1.28M 7 3
STR [27] 70.4% 95 0.16G 1.24M 7 7
OptG [43] 72.5% 95 0.22G 1.28M 7 7

SR-STE 71.5% 1:16 0.44G 3.52M 3 3
LBC 71.8% 1:16 0.44G 3.52M 3 3
MaxQ 74.6% 1:16 0.44G 3.52M 3 3

Table 4. Results of the N:M and unstructured sparsity methods for
ResNet50 on ImageNet. S: Structured. U: Uniform.

outperforms SR-STE [1] and LBC [44] at 1:4 sparse pat-
tern at the top-1 accuracy by 0.4% and 0.5% respectively.
For ResNet50, MaxQ achieves similar improvement at 1:4
and 2:8 sparse patterns. Meanwhile, we also conduct exper-
iments on lightweight CNN MobileNetV1, as compressing
this lightweight network is more beneficial for further ac-
celeration on mobile devices. Similar to ResNet, we apply
N:M sparsity to all except the first, last layers and depthwise
convolutional layers. The results in Tab. 3 also demonstrate
the superiority against the others.

The results in Tab. 2 and Tab. 3 also show two interest-
ing properties of our MaxQ method. ResNet34, ResNet50
and MobileNetV1 achieve 74.5%, 77.6% and 72.1% top-1
accuracy at 2:4 sparse pattern, while their dense counter-
part achieves 74.6%, 77.3% and 71.9% respectively, which
means our MaxQ can achieve almost lossless or better re-
sults on various networks at 2:4 sparse pattern. On the other
hand, our MaxQ achieves a more significant improvement
at a high sparse ratio. For example, our 1:16 ResNet50
achieves 74.6% top-1 accuracy, which outperforms the pre-
vious state-of-the-art by 2.8%.

4.3. Comparison with Unstructured Sparsity

We also compare the performance of MaxQ with state-
of-the-art unstructured sparsity methods using ResNet50.
The results in Tab. 4 demonstrate that our MaxQ consis-
tently achieves outstanding accuracy under various spar-
sity constraints. For example, ResNet50 with 1:4 and 2:8
sparse patterns achieve 77.3% and 77.2% top-1 accuracy re-
spectively. Meanwhile, ResNet50 with 1:16 sparse pattern
achieves 74.6% accuracy, surpassing STR and OptG over
4.2% and 2.1%. In contrast to unstructured sparsity, N:M
organizes weights in a structured format, avoiding ineffi-
cient memory access and low computational density due to

Model Method N:M mAP

F-RCNN

Baseline - 37.4

SR-STE 2:4 38.2
LBC 2:4 38.5
MaxQ 2:4 38.7

SR-STE 1:4 37.2
LBC 1:4 37.3
MaxQ 1:4 37.7

Table 5. Results for object detection on COCO benchmark.

Model Method N:M Box mAP Mask mAP

M-RCNN

Baseline - 38.2 34.7

SR-STE 2:4 39.0 35.3
LBC 2:4 39.3 35.4
MaxQ 2:4 39.2 35.5

SR-STE 1:4 37.6 33.9
LBC 1:4 37.8 34.0
MaxQ 1:4 38.3 34.4

Table 6. Results for instance segmentation on COCO benchmark.

irregular distribution of weights. Additionally, the uniform
distribution of N:M sparse weights ensures that computa-
tional loads are balanced when performing parallel compu-
tation and avoiding speed degradation due to load imbal-
ance across threads. These exhibit the effectiveness and ad-
vantages of exploring N:M sparsity.

4.4. Object Detection and Instance Segmentation

In addition to the image classification, we conducted exper-
iments on the challenging dataset COCO based on MMDe-
tection [4], to exploit the generalization ability of MaxQ.
For object detection, we employ classical models Faster R-
CNN, and for instance segmentation, we use Mask R-CNN.
Tab. 5 demonstrates that MaxQ consistently outperforms
previous methods in object detection. For example, MaxQ
yields a robust performance of 38.7 mAP at 2:4 sparse pat-
tern, which exceeds the previous state-of-the-art LBC by 0.2
mAP and improves it’s dense counterpart by 1.3 mAP. Sim-
ilar trends are observed in instance segmentation, as shown
in Tab. 6. Furthermore, MaxQ delivers results comparable
to dense baseline models at a 1:4 structure sparsity. These
results suggest that N:M sparse networks exhibit similar or
better feature transfer capabilities than dense networks and
can be effectively applied in downstream tasks.

4.5. Ablation Study

Method Top-1

Baseline (SR-STE) 71.5%
+ Multi-Axis Query 74.2%
+ Incremental Pruning (default) 74.6%
+ Train 200 Epochs 75.2%

Table 7. Ablation study of different components in MaxQ.

We investigate the effectiveness of different components
in the MaxQ through ablation studies. All the following

MaxQ: Multi-Axis Query for N:M Sparsity Network

Supplementary Material

6. MaxQ on ViT

6.1. Implentation Details

DeiT-Small

Stochastic depth survival prob 0.90
ti 0
tf 225

Data augmentation rand-m9-mstd0.5-inc1
Repeated Augmentation off
Input resolution 224
Epochs 300
Batch size 1024
Warmup epochs 20
Hidden dropout 0
GeLU dropout 0
Attention dropout (if applicable) 0
Classification dropout 0
Random erasing prob 0.25
EMA decay 0
Cutmix ↵ 1.0
Mixup ↵ 0.8
Cutmix-Mixup switch prob 0.5
Label smoothing 0.1
Peak learning rate 1e-3
Learning rate decay cosine
Optimizer AdamW
Adam ✏ 1e-6
Adam p�1, �2q (0.9, 0.999)
Weight decay 0.05
Gradient clipping 5.0

Table 11. Hyperparameters for DeiT-Small on ImageNet-1K.

6.2. Results for ImageNet

Model Method N:M Top-1 Epochs FLOPs Params

DeiT-Small

Baseline - 79.8% 300 4.6G 22.1M

SR-STE 2:4 75.7% 300 2.5G 11.4M
LBC 2:4 78.0% 300 2.5G 11.4M
MaxQ 2:4 78.5% 300 2.5G 11.4M

Table 12. Results of the different N:M sparsity training methods
for DeiT-Small on ImageNet.

To further validate the effectiveness of MaxQ on Vi-
sion Transformer (ViT), we conducted experiments with
2:4 sparsity on DeiT [40]. The hyperparameters and ex-
periment results are shown in Tab. 11 and Tab. 12. MaxQ
achieves 78.5% top-1 accuracy at 2:4 sparse pattern while
saving 45.6% FLOPs and 48.5% parameters. Meanwhile, it
exceeds SR-STE and LBC by 2.8% and 0.5% respectively.
It demonstrates that MaxQ is general and can enhance the
performance of different types of deep neural networks.

Model N:M ti tf Scheduler Top-1

ResNet50
1:16 0 90 cubic (Eq. (8)) 74.6%
1:16 0 90 linear(Eq. (9)) 74.5%
1:16 0 90 cos (Eq. (10)) 74.3%

Table 13. Ablation study of different ti and tf in MaxQ.

Figure 8. Visualization for N:M blocks ratio with different incre-
mental schedulers.

7. More Ablation Study

7.1. Incremental Schedulers

The ratio of N:M sparse blocks increases gradually with the
training epoch. We conduct several experiments for incre-
mental schedulers to compare their effectiveness, including
cubic (default), linear Eq. (9) and cos Eq. (10) as follows:

�t “ minp1,maxp0, pt ´ tiq{ptf ´ tiqqq (9)

�t “

$
’’&

’’%

0, t § ti

1 ´ 1
2

´
1 ` cosp t´ti

tf ´ti
⇡q

¯
, ti † t § tf

1, tf † t

(10)

As shown in Tab. 13, cubic scheduler (default) performs
better than the other schemes by 0.1% and 0.3% top-1 accu-
racy. We draw the N:M blocks ratio change for these three
schemes in Fig. 8. It suggests that rapidly increasing the
ratio of N:M sparse blocks at the beginning of training will
facilitate the model’s convergence and achieves better per-
formance.

8. Optimization

For back propagation, MaxQ follows the SR-STE

ml
t`1 “ ml

t ´ �trg
`
slt d ml

t

˘

` �
`
1 ´ clip

`
slt, 0, 1

˘˘
d ml

ts
(11)

Results COCO2017

Method Top-1 Sparsity FLOPs Params S U

Baseline 77.3% 0.0 4.10G 25.6M - -

RigL [10] 74.6% 80 0.92G 5.12M 7 3
GMP [46] 75.6% 80 0.82G 5.12M 7 3
MAP [2] 75.9% 80 - 5.12M 7 7
STR [27] 76.2% 81 0.82G 5.12M 7 3

SR-STE 75.3% 1:4 1.13G 7.97M 3 3
LBC 75.9% 1:4 1.13G 7.97M 3 3
MaxQ 77.3% 1:4 1.13G 7.97M 3 3

SR-STE 76.2% 2:8 1.13G 7.97M 3 3
LBC 76.5% 2:8 1.13G 7.97M 3 3
MaxQ 77.2% 2:8 1.13G 7.97M 3 3

DNW [42] 68.3% 95 0.20G 1.28M 7 7
RigL [10] 70.0% 95 0.49G 1.28M 7 3
GMP [46] 70.6% 95 0.20G 1.28M 7 3
STR [27] 70.4% 95 0.16G 1.24M 7 7
OptG [43] 72.5% 95 0.22G 1.28M 7 7

SR-STE 71.5% 1:16 0.44G 3.52M 3 3
LBC 71.8% 1:16 0.44G 3.52M 3 3
MaxQ 74.6% 1:16 0.44G 3.52M 3 3

Table 4. Results of the N:M and unstructured sparsity methods for
ResNet50 on ImageNet. S: Structured. U: Uniform.

outperforms SR-STE [1] and LBC [44] at 1:4 sparse pat-
tern at the top-1 accuracy by 0.4% and 0.5% respectively.
For ResNet50, MaxQ achieves similar improvement at 1:4
and 2:8 sparse patterns. Meanwhile, we also conduct exper-
iments on lightweight CNN MobileNetV1, as compressing
this lightweight network is more beneficial for further ac-
celeration on mobile devices. Similar to ResNet, we apply
N:M sparsity to all except the first, last layers and depthwise
convolutional layers. The results in Tab. 3 also demonstrate
the superiority against the others.

The results in Tab. 2 and Tab. 3 also show two interest-
ing properties of our MaxQ method. ResNet34, ResNet50
and MobileNetV1 achieve 74.5%, 77.6% and 72.1% top-1
accuracy at 2:4 sparse pattern, while their dense counter-
part achieves 74.6%, 77.3% and 71.9% respectively, which
means our MaxQ can achieve almost lossless or better re-
sults on various networks at 2:4 sparse pattern. On the other
hand, our MaxQ achieves a more significant improvement
at a high sparse ratio. For example, our 1:16 ResNet50
achieves 74.6% top-1 accuracy, which outperforms the pre-
vious state-of-the-art by 2.8%.

4.3. Comparison with Unstructured Sparsity

We also compare the performance of MaxQ with state-
of-the-art unstructured sparsity methods using ResNet50.
The results in Tab. 4 demonstrate that our MaxQ consis-
tently achieves outstanding accuracy under various spar-
sity constraints. For example, ResNet50 with 1:4 and 2:8
sparse patterns achieve 77.3% and 77.2% top-1 accuracy re-
spectively. Meanwhile, ResNet50 with 1:16 sparse pattern
achieves 74.6% accuracy, surpassing STR and OptG over
4.2% and 2.1%. In contrast to unstructured sparsity, N:M
organizes weights in a structured format, avoiding ineffi-
cient memory access and low computational density due to

Model Method N:M mAP

F-RCNN

Baseline - 37.4

SR-STE 2:4 38.2
LBC 2:4 38.5
MaxQ 2:4 38.7

SR-STE 1:4 37.2
LBC 1:4 37.3
MaxQ 1:4 37.7

Table 5. Results for object detection on COCO benchmark.

Model Method N:M Box mAP Mask mAP

M-RCNN

Baseline - 38.2 34.7

SR-STE 2:4 39.0 35.3
LBC 2:4 39.3 35.4
MaxQ 2:4 39.2 35.5

SR-STE 1:4 37.6 33.9
LBC 1:4 37.8 34.0
MaxQ 1:4 38.3 34.4

Table 6. Results for instance segmentation on COCO benchmark.

irregular distribution of weights. Additionally, the uniform
distribution of N:M sparse weights ensures that computa-
tional loads are balanced when performing parallel compu-
tation and avoiding speed degradation due to load imbal-
ance across threads. These exhibit the effectiveness and ad-
vantages of exploring N:M sparsity.

4.4. Object Detection and Instance Segmentation

In addition to the image classification, we conducted exper-
iments on the challenging dataset COCO based on MMDe-
tection [4], to exploit the generalization ability of MaxQ.
For object detection, we employ classical models Faster R-
CNN, and for instance segmentation, we use Mask R-CNN.
Tab. 5 demonstrates that MaxQ consistently outperforms
previous methods in object detection. For example, MaxQ
yields a robust performance of 38.7 mAP at 2:4 sparse pat-
tern, which exceeds the previous state-of-the-art LBC by 0.2
mAP and improves it’s dense counterpart by 1.3 mAP. Sim-
ilar trends are observed in instance segmentation, as shown
in Tab. 6. Furthermore, MaxQ delivers results comparable
to dense baseline models at a 1:4 structure sparsity. These
results suggest that N:M sparse networks exhibit similar or
better feature transfer capabilities than dense networks and
can be effectively applied in downstream tasks.

4.5. Ablation Study

Method Top-1

Baseline (SR-STE) 71.5%
+ Multi-Axis Query 74.2%
+ Incremental Pruning (default) 74.6%
+ Train 200 Epochs 75.2%

Table 7. Ablation study of different components in MaxQ.

We investigate the effectiveness of different components
in the MaxQ through ablation studies. All the following

Object Detection

Method Top-1 Sparsity FLOPs Params S U

Baseline 77.3% 0.0 4.10G 25.6M - -

RigL [10] 74.6% 80 0.92G 5.12M 7 3
GMP [46] 75.6% 80 0.82G 5.12M 7 3
MAP [2] 75.9% 80 - 5.12M 7 7
STR [27] 76.2% 81 0.82G 5.12M 7 3

SR-STE 75.3% 1:4 1.13G 7.97M 3 3
LBC 75.9% 1:4 1.13G 7.97M 3 3
MaxQ 77.3% 1:4 1.13G 7.97M 3 3

SR-STE 76.2% 2:8 1.13G 7.97M 3 3
LBC 76.5% 2:8 1.13G 7.97M 3 3
MaxQ 77.2% 2:8 1.13G 7.97M 3 3

DNW [42] 68.3% 95 0.20G 1.28M 7 7
RigL [10] 70.0% 95 0.49G 1.28M 7 3
GMP [46] 70.6% 95 0.20G 1.28M 7 3
STR [27] 70.4% 95 0.16G 1.24M 7 7
OptG [43] 72.5% 95 0.22G 1.28M 7 7

SR-STE 71.5% 1:16 0.44G 3.52M 3 3
LBC 71.8% 1:16 0.44G 3.52M 3 3
MaxQ 74.6% 1:16 0.44G 3.52M 3 3

Table 4. Results of the N:M and unstructured sparsity methods for
ResNet50 on ImageNet. S: Structured. U: Uniform.

outperforms SR-STE [1] and LBC [44] at 1:4 sparse pat-
tern at the top-1 accuracy by 0.4% and 0.5% respectively.
For ResNet50, MaxQ achieves similar improvement at 1:4
and 2:8 sparse patterns. Meanwhile, we also conduct exper-
iments on lightweight CNN MobileNetV1, as compressing
this lightweight network is more beneficial for further ac-
celeration on mobile devices. Similar to ResNet, we apply
N:M sparsity to all except the first, last layers and depthwise
convolutional layers. The results in Tab. 3 also demonstrate
the superiority against the others.

The results in Tab. 2 and Tab. 3 also show two interest-
ing properties of our MaxQ method. ResNet34, ResNet50
and MobileNetV1 achieve 74.5%, 77.6% and 72.1% top-1
accuracy at 2:4 sparse pattern, while their dense counter-
part achieves 74.6%, 77.3% and 71.9% respectively, which
means our MaxQ can achieve almost lossless or better re-
sults on various networks at 2:4 sparse pattern. On the other
hand, our MaxQ achieves a more significant improvement
at a high sparse ratio. For example, our 1:16 ResNet50
achieves 74.6% top-1 accuracy, which outperforms the pre-
vious state-of-the-art by 2.8%.

4.3. Comparison with Unstructured Sparsity

We also compare the performance of MaxQ with state-
of-the-art unstructured sparsity methods using ResNet50.
The results in Tab. 4 demonstrate that our MaxQ consis-
tently achieves outstanding accuracy under various spar-
sity constraints. For example, ResNet50 with 1:4 and 2:8
sparse patterns achieve 77.3% and 77.2% top-1 accuracy re-
spectively. Meanwhile, ResNet50 with 1:16 sparse pattern
achieves 74.6% accuracy, surpassing STR and OptG over
4.2% and 2.1%. In contrast to unstructured sparsity, N:M
organizes weights in a structured format, avoiding ineffi-
cient memory access and low computational density due to

Model Method N:M mAP

F-RCNN

Baseline - 37.4

SR-STE 2:4 38.2
LBC 2:4 38.5
MaxQ 2:4 38.7

SR-STE 1:4 37.2
LBC 1:4 37.3
MaxQ 1:4 37.7

Table 5. Results for object detection on COCO benchmark.

Model Method N:M Box mAP Mask mAP

M-RCNN

Baseline - 38.2 34.7

SR-STE 2:4 39.0 35.3
LBC 2:4 39.3 35.4
MaxQ 2:4 39.2 35.5

SR-STE 1:4 37.6 33.9
LBC 1:4 37.8 34.0
MaxQ 1:4 38.3 34.4

Table 6. Results for instance segmentation on COCO benchmark.

irregular distribution of weights. Additionally, the uniform
distribution of N:M sparse weights ensures that computa-
tional loads are balanced when performing parallel compu-
tation and avoiding speed degradation due to load imbal-
ance across threads. These exhibit the effectiveness and ad-
vantages of exploring N:M sparsity.

4.4. Object Detection and Instance Segmentation

In addition to the image classification, we conducted exper-
iments on the challenging dataset COCO based on MMDe-
tection [4], to exploit the generalization ability of MaxQ.
For object detection, we employ classical models Faster R-
CNN, and for instance segmentation, we use Mask R-CNN.
Tab. 5 demonstrates that MaxQ consistently outperforms
previous methods in object detection. For example, MaxQ
yields a robust performance of 38.7 mAP at 2:4 sparse pat-
tern, which exceeds the previous state-of-the-art LBC by 0.2
mAP and improves it’s dense counterpart by 1.3 mAP. Sim-
ilar trends are observed in instance segmentation, as shown
in Tab. 6. Furthermore, MaxQ delivers results comparable
to dense baseline models at a 1:4 structure sparsity. These
results suggest that N:M sparse networks exhibit similar or
better feature transfer capabilities than dense networks and
can be effectively applied in downstream tasks.

4.5. Ablation Study

Method Top-1

Baseline (SR-STE) 71.5%
+ Multi-Axis Query 74.2%
+ Incremental Pruning (default) 74.6%
+ Train 200 Epochs 75.2%

Table 7. Ablation study of different components in MaxQ.

We investigate the effectiveness of different components
in the MaxQ through ablation studies. All the following

Instance Segmentation

Efficiency

results are based on the ResNet50 model with 1:16 sparse
pattern on the ImageNet dataset.
Components. In Tab. 7, we investigate the effectiveness
of different components in MaxQ, namely multi-axis query
and incremental pruning. The baseline is derived from SR-
STE where the model is trained solely with the sparse-
refined straight-through estimator. There is no weight im-
portance identifying among blocks and incremental prun-
ing stage. The multi-axis query identifies and enhances the
weights with more importance using soft masks, prevent-
ing crucial weights from being overlooked. It ensures more
effective updates for important weights during training, re-
sulting in 2.7% accuracy improvement. When the percent-
age of N:M sparse block in each layer increases accord-
ing to a specific schedule, instead of being fixed to 100%
early in training, we can obtain a more optimal N:M sparse
network. This dynamic approach further improves accu-
racy by 0.4%. Additionally, to achieve a fair comparison
with ASP, we conduct an experiment to study the effect of
training epochs. We train MaxQ for 200 epochs, the same
ASP setup. The experiment result shows that longer train-
ing epochs lead to considerable performance gains, improv-
ing accuracy by 0.6% compared to the default settings. It’s
worth noting that for N:M sparse networks, the PPF train-
ing pipeline is unnecessary as it does not significantly im-
prove its performance. On the contrary, applying soft and
incremental strategies to train an N:M sparse network from
scratch yields better results. Moreover, these strategies are
more straightforward when compared to the PPF pipeline.

Model N:M ti tf tf ´ ti Top-1 FLOPs(Train)

ResNet50

1:16 0 30 30 74.51% 0.74ˆ(3.2e18)
1:16 0 60 60 74.41% 0.78ˆ
1:16 0 90 90 74.55% 0.81ˆ
1:16 30 60 30 74.56% 0.81ˆ
1:16 30 90 60 74.52% 0.85ˆ
1:16 60 90 30 74.47% 0.89ˆ

Table 8. Ablation study of different ti and tf in MaxQ.

Choice of ti and tf . We conduct ablation studies involving
different ti and tf in MaxQ. To explain, larger ti and tf ´ ti
indicate more weights can be sufficiently trained before ap-
plying N:M sparsity and a smoother sparsity process. And
the total train FLOPs are positively correlated with ti and
tf . As illustrated in Tab. 8, our method can achieve excel-
lent performance across various ti and tf . Moreover, more
training FLOPs does not bring a notable improvement to the
final result. It suggests that the weight distribution charac-
teristics of the trained dense network are not essential and
explains why the PPF strategy for the ASP does not yield
favorable results in the N:M sparsity networks. Superior
N:M sparsity networks can be trained in one training pass
by soft, dynamic and incremental strategies.
Sparsity strategy. We introduce two other strategies to in-
vestigate the efficiency of our strategy for incremental spar-

Figure 5. Convergence visualization for different strategies. In-
verse means we firstly apply the N:M sparsity for blocks with
smaller `1-norm. N-M means reducing

››bl
g,:

››
0

from M to N.

sity. ti and tf are set to 0 and 90 respectively. As shown in
Fig. 5, both of inverse and N-M suffer severe performance
degradation when the sparse ratio increases (when epoch
increases to 90). Applying N:M sparsity first to weight
blocks with larger `1-norm will bring more stable and ef-
ficient convergence than others. At the same time, our strat-
egy achieves 74.55% top-1 accuracy on ImageNet, better
than the inverse with 74.13% and the N-M with 74.18%.

4.6. Performance Analysis

Model N:M Method Train speed Top-1 FLOPs
(Train)

BS=128 BS=256

ResNet50

- Dense 798 884 77.3% 1ˆ(3.2e18)

2:4
SR-STE 642 854 77.0% 0.83ˆ
LBC 373 487 77.2% 0.72ˆ
MaxQ 507 732 77.6% 0.91ˆ

2:8
SR-STE 625 862 76.2% 0.74ˆ
LBC 382 512 76.5% 0.53ˆ
MaxQ 514 743 77.2% 0.86ˆ

1:16
SR-STE 628 852 71.5% 0.69ˆ
LBC 364 538 71.8% 0.38ˆ
MaxQ 502 725 74.6% 0.81ˆ

Table 9. Train speed (NVIDIA RTX 3090, measured in sam-
ples/second/GPU), ImageNet top-1 accuracy and FLOPs (train)
with different N:M sparse pattern and methods.

Model N:M Method FP32 INT8 Acc Drop

ResNet50 2:4 MaxQ 77.6% 77.1% 0.5%
SR-STE 77.1% 76.6% 0.5%

Table 10. Post-Training Quantization (PTQ) results on SR-STE
and MaxQ for ResNet50 with 2:4 sparse pattern.

Inference. As mentioned earlier, MaxQ can be considered
a self-structured re-parameterization process during infer-
ence. Thus, the soft masks and weights can be folded as
constants and do not introduce any additional overhead dur-
ing the inference. Furthermore, as the soft masks also ad-
here to the N:M sparse pattern, MaxQ does not disrupt the
sparse pattern and can still leverage its benefits, resulting in
favorable latency on Ampere GPUs.

Train Speed: SR-STE > MaxQ > LBC

Performance: MaxQ > LBC > SR-STE

Friendly to Quantization (ResNet50-2:4)

Figure 6. Parameter distribution from SR-STE at inference.

Figure 7. Parameter distribution from MaxQ at inference.

Training. The training efficiency of the algorithm is also an
important aspect to consider. While many algorithms have
smaller FLOPs theoretically, they may not be highly par-
allelized or have a large amount of memory access. Thus,
there will be an increase but not a reduction in GPU days.
To investigate the efficiency of various algorithms for N:M
sparsity, we present the train speed, top-1 accuracy, and
training FLOPs for SR-STE, LBC, and MaxQ in Tab. 9. For
a fair comparison, their train speeds are tested with the same
training script on the same machine with an NVIDIA RTX
3090 and automatic mixed precision. SR-STE is the fastest.
MaxQ, although about 15% slower than SR-STE, achieves
the highest top-1 accuracy among the three methods. The
decrease in train speed primarily results from the multi-axis
query, which incurs high memory access but involves min-
imal computational workload. Furthermore, although LBC
has the theoretically least training FLOPs, it is the slowest
among the three methods. Compared to the train speed of
dense network, LBC is almost 50% slower for a batch size
of 128 and 30% slower for a batch size of 256. In summary,
MaxQ stands out as the most efficient algorithm, striking
the best balance between training speed and accuracy.

4.7. Quantization

A structured re-parameterized network with simple PTQ
may suffer from significant degradation in accuracy [6, 8],
which is completely unusable. To gain insights into the
characteristics of MaxQ quantization, we first visualize
the weight distribution of SR-STE and MaxQ in Fig. 6
and Fig. 7 respectively. The weight distribution of SR-
STE and MaxQ exhibits notable differences for the same
model. Specifically, in shallower layers, MaxQ has a
sharper weight distribution. While in deeper layers, it is
smoother and has a broader dynamic range. We conducted
quantization experiments on SR-STE and MaxQ for com-
parison. The results are presented in Tab. 10. To our sur-

prise, our MaxQ demonstrates quantization-friendliness de-
spite being perceived as a self-structured re-parameterized
process. For ResNet50, MaxQ with a 2:4 sparse pattern can
achieve 0.5% drop in the top-1 accuracy (77.6% Ñ 77.1%),
when it is quantized to INT8 using a simple uniform PTQ
method provided by the Ascend Tensor Compiler (ATC).
Similar results are observed for SR-STE. These experiments
indicate that the weight distribution obtained by MaxQ are
also applicable to quantize. Furthermore, the performance
of the INT8 model can still be improved by the more ad-
vanced quantization methods, such as non-uniform PTQ
and Quantization-Aware Traning (QAT).

5. Conclusion

N:M sparsity is a crucial method to reduce inference over-
head and enable fast inference on NVIDIA Ampere GPUs.
In this paper, we propose a novel Multi-Axis Query method,
MaxQ, to identify the critical weights and build a high-
performance N:M sparsity network. During the training,
MaxQ employs a dynamic approach to generate soft N:M
masks, which enhances the weights with more importance
and ensures more effective updates for them. During the
runtime, soft N:M masks can be folded into the network as
constants, which will not cause any distortion to the sparse
pattern or bring additional computational costs. Further,
MaxQ follows a gradual sparse schedule by increasing the
percentage of N:M weight blocks. It progressively allows
the network to heal from sparsity, avoiding severe infor-
mation loss and achieving stable and efficient convergence.
Experiments on various vision tasks demonstrate that MaxQ
can achieve notable performance gains over the state-of-the-
art methods on multiple N:M sparse patterns and CNNs.
Acknowledgements This work is funded in part by the Key
Research and Development Project of Zhejiang Province
under Grant 2021C01035.

Figure 6. Parameter distribution from SR-STE at inference.

Figure 7. Parameter distribution from MaxQ at inference.

Training. The training efficiency of the algorithm is also an
important aspect to consider. While many algorithms have
smaller FLOPs theoretically, they may not be highly par-
allelized or have a large amount of memory access. Thus,
there will be an increase but not a reduction in GPU days.
To investigate the efficiency of various algorithms for N:M
sparsity, we present the train speed, top-1 accuracy, and
training FLOPs for SR-STE, LBC, and MaxQ in Tab. 9. For
a fair comparison, their train speeds are tested with the same
training script on the same machine with an NVIDIA RTX
3090 and automatic mixed precision. SR-STE is the fastest.
MaxQ, although about 15% slower than SR-STE, achieves
the highest top-1 accuracy among the three methods. The
decrease in train speed primarily results from the multi-axis
query, which incurs high memory access but involves min-
imal computational workload. Furthermore, although LBC
has the theoretically least training FLOPs, it is the slowest
among the three methods. Compared to the train speed of
dense network, LBC is almost 50% slower for a batch size
of 128 and 30% slower for a batch size of 256. In summary,
MaxQ stands out as the most efficient algorithm, striking
the best balance between training speed and accuracy.

4.7. Quantization

A structured re-parameterized network with simple PTQ
may suffer from significant degradation in accuracy [6, 8],
which is completely unusable. To gain insights into the
characteristics of MaxQ quantization, we first visualize
the weight distribution of SR-STE and MaxQ in Fig. 6
and Fig. 7 respectively. The weight distribution of SR-
STE and MaxQ exhibits notable differences for the same
model. Specifically, in shallower layers, MaxQ has a
sharper weight distribution. While in deeper layers, it is
smoother and has a broader dynamic range. We conducted
quantization experiments on SR-STE and MaxQ for com-
parison. The results are presented in Tab. 10. To our sur-

prise, our MaxQ demonstrates quantization-friendliness de-
spite being perceived as a self-structured re-parameterized
process. For ResNet50, MaxQ with a 2:4 sparse pattern can
achieve 0.5% drop in the top-1 accuracy (77.6% Ñ 77.1%),
when it is quantized to INT8 using a simple uniform PTQ
method provided by the Ascend Tensor Compiler (ATC).
Similar results are observed for SR-STE. These experiments
indicate that the weight distribution obtained by MaxQ are
also applicable to quantize. Furthermore, the performance
of the INT8 model can still be improved by the more ad-
vanced quantization methods, such as non-uniform PTQ
and Quantization-Aware Traning (QAT).

5. Conclusion

N:M sparsity is a crucial method to reduce inference over-
head and enable fast inference on NVIDIA Ampere GPUs.
In this paper, we propose a novel Multi-Axis Query method,
MaxQ, to identify the critical weights and build a high-
performance N:M sparsity network. During the training,
MaxQ employs a dynamic approach to generate soft N:M
masks, which enhances the weights with more importance
and ensures more effective updates for them. During the
runtime, soft N:M masks can be folded into the network as
constants, which will not cause any distortion to the sparse
pattern or bring additional computational costs. Further,
MaxQ follows a gradual sparse schedule by increasing the
percentage of N:M weight blocks. It progressively allows
the network to heal from sparsity, avoiding severe infor-
mation loss and achieving stable and efficient convergence.
Experiments on various vision tasks demonstrate that MaxQ
can achieve notable performance gains over the state-of-the-
art methods on multiple N:M sparse patterns and CNNs.
Acknowledgements This work is funded in part by the Key
Research and Development Project of Zhejiang Province
under Grant 2021C01035.

SR-STE 77.1% -> 76.6%

MaxQ 77.6% -> 77.1%

MaxQ: Multi-Axis Query for N:M Sparsity
Network

Thank you!
https://github.com/JingyangXiang/MaxQ

https://github.com/JingyangXiang/MaxQ

