

Muhammad Sohail Danish¹, Muhammad Haris Khan¹, Muhammad Akhtar Munir^{1,2}, M. Saquib Sarfraz³, Mohsen Ali²

Dynamic World

World is very dynamic, very likely to encounter new domains

Oza, Poojan, et al. "Unsupervised Domain Adaptation of Object Detectors: A Survey." arXiv preprint arXiv:2105.13502 (2021).

Model on new domain

Encountering new domain

Model on same domain

Model suffer from performance degradation upon encountring a new domain

Oza, Poojan, et al. "Unsupervised Domain Adaptation of Object Detectors: A Survey." arXiv preprint arXiv:2105.13502 (2021).

Problem Statement

Training Data

Given data sampled from single source domain, train a model that does not suffer performance degradation over other unseen target domains.

Aming Wu, et al. "Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation." CVPR. 2022.

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

Testing in different weather conditions

Recent Work

Single-Domain Generalized Object Detection in Urban Scene

■ Extract Domain-invariant representations (DIR) to improve DG ■ Self-distillation promotes invariant feature is shallow layers of backbone \blacksquare Boosts the source domain results at the cost of reduced generalization ability

Aming Wu, et al. "Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation." CVPR. 2022.

 $\alpha_i, \beta_i \sim Gaussian(1, 0.75) \in \mathbb{R}^{B \times C}$

TOWARDS ROBUST OBJECT DETECTION INVARIANT TO REAL-WORLD DOMAIN SHIFTS – ICLR2023

 $x_i \in \mathcal{R}^{B \times C \times H_i \times W_i}$

§ Perturbing the feature channel statistics of source domain can synthesize new latent styles and overcome domain style overfitting

$$
\mu_{i,c} = \frac{1}{H_i W_i} \sum_{i} H_i \sum_{i} w_i x_i \in \mathcal{R}^{B \times C}
$$

Our Approach

Proposed Solution

- 9 domain
- Our method has two main components
	- **1. Diversifying** the single domain by augmentations for segregating domain-specific features during model training
	- **2. Aligning** the model prediction across different views of the same image to improve the generlization and better calibration

■ We intend to make an object detector domain invariant by using single training

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

Preliminaries

Source: $D_s = \{(x_i)$ $\overline{\mathcal{S}}$, $\left\{\mathcal{Y}_i^S\right\}^{N^S}_{i=1}$ N^S is the training domain where x_i is image and y_i is label **Farget:** $\{D_t\}_{t=1}^T$ $T_{t=1}$ is set of T unseen target domains \bullet ϕ (.) is a visual corruption function which convert image from \mathcal{D}_s into different domain \mathcal{D}_{Φ} where $\Phi \sim \Phi$

-
-
-

■ We define a domain invariant object detector as

Assuming that, for an input image x, an object detection model \mathcal{F}_{det} predicts class probability distribution $\widehat{p_n}$ and bounding box coordinates \widehat{b} Let x^s be an image from \mathcal{D}_s and $x^\varphi=\varphi(x^s)$ be the transformation of x^s , denoted as x^φ , where $\varphi\sim$ Φ . The model \mathcal{F}_{det} is domain invariant if:

$$
\widehat{p_n^s} = \widehat{p_n^{\varphi}}
$$
\n
$$
1 - \text{IoU}\left(\widehat{b_n^s}, \widehat{b_n^{\varphi}}\right) = 0
$$
\n
$$
(1)
$$

 $\widehat{\mathbf{b}_n} \in \mathbb{R}^4$ for the nth proposal.

Faster R-CNN

E $F \in R^{m \times w \times h}$ is the feature map output from the backbone **E** RPN takes F as input to predict the object proposals $O \in R^{Z \times 4}$ **E** $A = \mathsf{RA}(O, F) \in R^{Z \times m}$ is feature representation \mathcal{L}_{det} is the detection Loss give as

 \blacksquare Ψ includes the classifier and regressor, y and b are ground truth

$$
\mathcal{L}_{\text{det}} = \sum_{n=1}^{Z} L_{\text{det}}(\Psi(A_n), y_n,
$$

 b_n

Diversifying Single Source Domain

 \blacksquare Diversification help to learn actual semantics instead of shortcuts ■ Augment every image in the mini-batch using ϕ (.) where $\phi \sim \Phi$ ■ Φ contain ImageNet-C with Fourier transform-based corruptions grouped as § **Blur** smooth the pixels by apply blur functions including glass, Gaussian, motion,

-
-
- - defocus
	-
	-
	-

§ **Noise** add different kinds of noise e.g. Gaussian, shot, spackle, impulse § **Digital** either change the pixel intensities (brightness, saturation and contrast) or changes resolution using JPEG compression, pixelation, and elastic transformation § **Fourier-based** such as phase scaling, constant amplitude, and High Pass Filter

Examples of augmentations

Blur

Noise

Digital

Digital + Fourier

■ Diversification outperforms Faster R-CNN baselines

Diversifying the Single Domain

Clipart1k

Watercolor2k

Z Faster RCNN N Diversification

Comic2k

■ Model is trained on Pascal VOC (indomain) and evaluated on Clipart1k, Watercolor2k and Comic2k (Out-ofdomain)

Clipart1k

Watercolor2k

N Diversification **Z Faster RCNN**

Comic2k

Limitations of Diversification

■ The performance misalignment on diversified and original images § Miscalibration in out-of-domain scenarios § **Solution**: Use proposed alignment losses

Aligning classification

 $n=1$

Minimize the KL divergence between the classifier output \hat{P}_n^s \hat{P}_n^{ϕ} • No 1-1 correspondence between O^{φ} and O^{ς} **•** Obtain $\hat{p}_{n}^{\phi'}$ by passing features from augmented and proposals from original image ■ The final classification alignment loss is given by $\mathcal{L}_{\text{cal}} = \sum \text{KL}(\hat{\mathbf{p}}_n^s \| \hat{\mathbf{p}}_n^{\phi'})$

 \int_{0}^{7} $\left| \frac{2}{2} \right|$

Aligning Regression

• Obtain $\hat{\mathbf{b}}_n^{\phi'}$ similar to

\n- Obtain
$$
\hat{\mathbf{b}}_n^{\phi'}
$$
 similar to $\hat{\mathbf{p}}_n^{\phi'}$
\n- Maximize IoU between bounding box regressor output $\hat{\mathbf{b}}_n^s \hat{\mathbf{b}}_n^{\phi'}$
\n- We achieve this minimizing the L2-squared norm
\n

$$
\mathcal{L}_{\text{ral}} = \|\hat{\mathbf{b}}_n^s - \hat{\mathbf{b}}_n^{\phi}
$$

Overall training objective

• Overall training loss is given as

\blacksquare where α and β are the hyperparameters for balancing the contributions of alignment losses

$\mathcal{L}_{\text{tot}} = \mathcal{L}_{\text{det}} + \alpha \mathcal{L}_{\text{cal}} + \beta \mathcal{L}_{\text{ral}}$

Experiments and Results

Comparison on Real to artistic generalization using mAP metric (%)

After using the proposed alignment losses, we are able to boost the overall performance by 13.2%, 12.9%, and 14.3% on Clipart1k, Watercolor2k and Comic2k respectively

Comparison on Urban-scene detection using mAP metric (%)

Our method beats all baselines and state-of-the-art method and gains 8-9% on DR and NR and 3-4 % on NC and DF.

Single Stage Detector

■ We choose FCOS which is anchor-less single stage object detector to evaluate our method ■ As there is no RPN involved in the FCOS, the 1-1 correspondence between detection on clean and augmented images is guaranteed

Evaluation on Single Stage Detector using mAP metric (%)

In comparison to FCOS, our method delivers a significant gain of 13.0%, 10.7% and 15.8% on Clipart1k, Watercolor2k, and Comic2k shifts, respectively

Comparison with DA methods using mAP metric (%)

Even though our method does not require the target domain datasets at training time, it can still achieve better results than many domain adaptation methods.

Calibration Performance using D-ECE metric (%)

Compared to baseline, the diversification increase model calibration error, however, our method is capable of improving model calibration

Reliability Diagram

■ Compared to baseline, the diversification increase model calibration error, however, our method is capable of improving model calibration

Comparison on Medical Imaging dataset

Generalization Performance (mAP %) Calibration Performance (D-ECE %)

Our proposed method is capable of generalizing to an unseen medical imaging domain (LCM), and improving the model calibration.

Qualitative results on Real to Artistic

t1k

atercolor₂k

(a) Faster R-CNN Diversification Our Method Faster R-CNN

(f) NP

Diversification **Our Method**

(b) NP

By using the proposed alignment losses, our model is not only able to detect the object that were missed by baselines but also reduces the false positives.

Qualitative results on Real to Artistic

By using the proposed alignment losses, our model is not only able to detect the object that were missed by baselines but also reduces the false positives.

Thanks

