

Improving Single Domain-Generalized Object Detection: **A Focus on Diversification and Alignment**

Muhammad Sohail Danish¹, Muhammad Haris Khan¹, Muhammad Akhtar Munir^{1,2}, M. Saquib Sarfraz³, Mohsen Ali²

Dynamic World

World is very dynamic, very likely to encounter new domains

Oza, Poojan, et al. "Unsupervised Domain Adaptation of Object Detectors: A Survey." arXiv preprint arXiv:2105.13502 (2021).

Encountering new domain

Model on same domain

Model suffer from performance degradation upon encountring a new domain

Oza, Poojan, et al. "Unsupervised Domain Adaptation of Object Detectors: A Survey." arXiv preprint arXiv:2105.13502 (2021).

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

Model on new domain

Problem Statement

Training Data

Given data sampled from single source domain, train a model that does not suffer performance degradation over other unseen target domains.

Aming Wu, et al. "Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation." CVPR. 2022.

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

Testing in different weather conditions

Recent Work

Single-Domain Generalized Object Detection in Urban Scene

Extract Domain-invariant representations (DIR) to improve DG Self-distillation promotes invariant feature is shallow layers of backbone Boosts the source domain results at the cost of reduced generalization ability

Aming Wu, et al. "Single-Domain Generalized Object Detection in Urban Scene via Cyclic-Disentangled Self-Distillation." CVPR. 2022.

TOWARDS ROBUST OBJECT DETECTION INVARIANT TO REAL-WORLD DOMAIN SHIFTS – ICLR2023

 $x_i \in \mathcal{R}^{B \times C \times H_i \times W_i}$

Perturbing the feature channel statistics of source domain can synthesize new latent styles and overcome domain style overfitting

$$\mu_{i,c} = \frac{1}{H_i W_i} \sum_{H_i} \sum_{W_i} x_i \in \mathcal{R}^{B \times C}$$

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

 $\alpha_i, \beta_i \sim Gaussian(1, 0.75) \in \mathcal{R}^{B \times C}$

Our Approach

Proposed Solution

- domain
- Our method has two main components
 - **1. Diversifying** the single domain by augmentations for segregating domain-specific features during model training
 - 2. Aligning the model prediction across different views of the same image to improve the generlization and better calibration

We intend to make an object detector **domain invariant** by using single training

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

9

Preliminaries

• Source: $\mathcal{D}_s = \{(x_i^s, y_i^s)\}_{i=1}^{N^s}$ is the training domain where x_i is image and y_i is label • **Target:** $\{\mathcal{D}_t\}_{t=1}^T$ is set of T unseen target domains • $\phi(.)$ is a visual corruption function which convert image from \mathcal{D}_{s} into different domain \mathcal{D}_{Φ} where $\phi \sim \Phi$

We define a domain invariant object detector as

Assuming that, for an input image x, an object detection model \mathcal{F}_{det} predicts class probability distribution $\widehat{p_n}$ and bounding box coordinates $\widehat{b_n} \in \mathbb{R}^4$ for the nth proposal. Let x^s be an image from \mathcal{D}_s and $x^{\phi} = \phi(x^s)$ be the transformation of x^s , denoted as x^{ϕ} , where $\phi \sim d^{-1}$ Φ . The model \mathcal{F}_{det} is domain invariant if:

$$\widehat{p_n^s} = \widehat{p_n^{\varphi}}$$
$$1 - IoU\left(\widehat{b_n^s}, \widehat{b_n^{\varphi}}\right) = 0$$

Faster R-CNN

• \mathcal{L}_{det} is the detection Loss give as

• $F \in R^{m \times w \times h}$ is the feature map output from the backbone RPN takes F as input to predict the object proposals $O \in \mathbb{R}^{Z \times 4}$ • $A = RA(O, F) \in R^{Z \times m}$ is feature representation

$$\mathcal{L}_{det} = \sum_{n=1}^{Z} L_{det}(\Psi(A_n), y_n,$$

Ψ includes the classifier and regressor, y and b are ground truth

 b_n

Diversifying Single Source Domain

- - defocus

Diversification help to learn actual semantics instead of shortcuts • Augment every image in the mini-batch using $\phi(.)$ where $\phi \sim \Phi$ Φ contain ImageNet-C with Fourier transform-based corruptions grouped as **Blur** smooth the pixels by apply blur functions including glass, Gaussian, motion,

Noise add different kinds of noise e.g. Gaussian, shot, spackle, impulse **Digital** either change the pixel intensities (brightness, saturation and contrast) or changes resolution using JPEG compression, pixelation, and elastic transformation Fourier-based such as phase scaling, constant amplitude, and High Pass Filter

Examples of augmentations

Blur

Noise

Digital

Digital + Fourier

Diversifying the Single Domain

Clipart1k

Watercolor2k

Faster RCNN Solution

Comic2k

Diversification outperforms Faster R-CNN baselines

Model is trained on Pascal VOC (indomain) and evaluated on Clipart1k, Watercolor2k and Comic2k (Out-ofdomain)

Limitations of Diversification

The performance misalignment on diversified and original images Miscalibration in out-of-domain scenarios Solution: Use proposed alignment losses

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

Clipart1k

Watercolor2k

N Diversification Faster RCNN

Comic2k

Aligning classification

n=1

Minimize the KL divergence between the classifier output $\hat{\mathbf{p}}_n^s \,\,\, \hat{\mathbf{p}}_n^{\phi}$ • No 1-1 correspondence between O^{φ} and O^{s} • Obtain $\hat{\mathbf{p}}_{n}^{\phi'}$ by passing features from augmented and proposals from original image The final classification alignment loss is given by $\mathcal{L}_{\text{cal}} = \sum \operatorname{KL}(\hat{\mathbf{p}}_n^s \| \hat{\mathbf{p}}_n^{\phi'})$

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

16

Aligning Regression

• Obtain $\hat{\mathbf{b}}_n^{\phi'}$ similar to Maximize IoU betw We achieve this mi

o
$$\hat{\mathbf{p}}_{n}^{\phi'}$$

veen bounding box regresso
inimizing the L2-squared no

$$\mathcal{L}_{\mathrm{ral}} = \|\hat{\mathbf{b}}_n^s - \hat{\mathbf{b}}_n^\phi\|$$

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

or output $\hat{\mathbf{b}}_n^s \hat{\mathbf{b}}_n^{\phi'}$ rm $\binom{2}{2}$

Overall training objective

Overall training¹⁰ loss is given as

where α and β are the hyperparameters for balancing the contributions of alignment losses

$\mathcal{L}_{\text{tot}} = \mathcal{L}_{\text{det}} + \alpha \mathcal{L}_{\text{cal}} + \beta \mathcal{L}_{\text{ral}}$

Experiments and Results

Comparison on Real to artistic generalization using mAP metric (%)

Method

Faster R-CNN

Diversification (Div.)

Div. + \mathcal{L}_{cal}

Div. + \mathcal{L}_{ral}

Div. + \mathcal{L}_{cal} + \mathcal{L}_{ral}

VOC	Clipart1k	Watercolor2k	Com
81.8	25.7	44.5	18
80.0	34.2	53.0	24
82.1	36.2	53.9	28
80.7	35.0	53.8	28
80.1	38.9	57.4	33

After using the proposed alignment losses, we are able to boost the overall performance by 13.2%, 12.9%, and 14.3% on Clipart1k, Watercolor2k and Comic2k respectively

Comparison on Urban-scene detection using mAP metric (%)

Method

Faster R-CNN

SW*

IBN-Net*

IterNorm*

ISW*

Wu et al.*

Diversification

Our Method

Our method beats all baselines and state-of-the-art method and gains 8-9% on DR and NR and 3-4 % on NC and DF.

DS NC DR NR 51.8 38.9 30.0 15.7 50.0 22.4 26.2 12.7	DF 33. 30.
	30.
50.6 33.4 26.3 13.7	
49.7 32.1 26.1 14.3	29.
43.9 29.6 22.8 12.6	28.
51.3 33.2 25.9 14.1	31.
56.1 36.6 28.2 16.6	33.
50.6 39.4 37.0 22.0	35.
52.8 42.5 38.1 24.1	37.

Single Stage Detector

We choose FCOS which is anchor-less single stage object detector to evaluate our method As there is no RPN involved in the FCOS, the 1-1 correspondence between detection on clean and augmented images is guaranteed

Evaluation on Single Stage Detector using mAP metric (%)

	VOC	Clipart	Watercolor	Comic
	78.1	24.4	44.3	15.4
ion	79.6	31.7	48.8	25.2
l	80.1	35.4	52.6	29.4
τl	77.5	29.8	50.3	24.0
+	77.5	37.4	55.0	31.3

In comparison to FCOS, our method delivers a significant gain of 13.0%, 10.7% and 15.8% on Clipart1k, Watercolor2k, and Comic2k shifts, respectively

Comparison with DA methods using mAP metric (%)

Even though our method does not require the target domain datasets at training time, it can still achieve better results than many domain adaptation methods.

Method	Clipart	Watercolor	Comic
A-Faster	19.8	46.0	
SWDA	38.1	53.3	27.4
HTCN	40.3		
DBGL	41.6	53.8	29.7
r Method	38.9	57.4	33.2

Calibration Performance using D-ECE metric (%)

Method	Clipart	Watercolor	Comic	Method	NC	DR	NR	DF
Faster R-CNN	11.9	18.5	15.4	Faster R-CNN	31.5	29.3	27.9	25.8
Diversification	14.5	21.4	17.4	Diversification	33.0	30.2	28.9	25.7
Our Method	10.7	14.4	14.3	Our Method	29.3	24.9	15.8	20.6

Compared to baseline, the diversification increase model calibration error, however, our method is capable of improving model calibration

Reliability Diagram

Compared to baseline, the diversification increase model calibration error, however, our method is capable of improving model calibration

Comparison on Medical Imaging dataset

Generalization Performance (mAP %)

Our proposed method is capable of generalizing to an unseen medical imaging domain (LCM), and improving the model calibration.

HCM	LCM
71.4	15.1
74.7	25.0
70.7	35.9

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

Method	LCM
Faster R-CNN	8.4
Diversification	8.0
Ours	5.5

Calibration Performance (D-ECE %)

Qualitative results on Real to Artistic

1k

atercolor2k

(a) Faster R-CNN

NP

By using the proposed alignment losses, our model is not only able to detect the object that were missed by baselines but also reduces the false positives.

(c) Diversification

Our Method

Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment

Faster R-CNN

(f) NP

Diversification

(h) Our Method

Qualitative results on Real to Artistic

By using the proposed alignment losses, our model is not only able to detect the object that were missed by baselines but also reduces the false positives.

Thanks

