

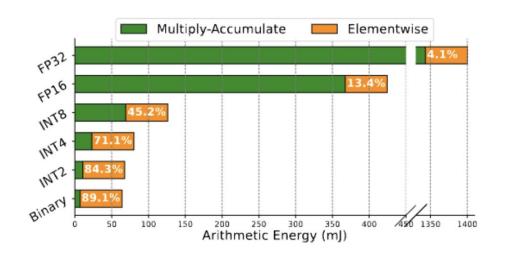
PikeLPN: Mitigating Overlooked Inefficiencies of Low-Precision Neural Networks

Marina Neseem, Conor McCullough, Randy Hsin, Chas Leichner, Shan Li, In Suk Chong, Andrew G. Howard, Lukasz Lew, Sherief Reda, Ville-Mikko Rautio, Daniele Moro

Low-precision Quantization improves Energy Efficiency

- → Int8 Multiplication consumes 18.5X less energy than FP32 Multiplication.
- → Int8 Addition consumes 30X less energy than FP32 Addition.

Less Cost in Data Centers



Longer Battery-Life on Edge Devices

State-of-the-art Quantized Models have overlooked inefficiencies

<u>Arithmetic Operations in Quantized Models:</u>

- 1. Multiply and Accumulate:
 - Convolution Layers
 - Linear Layers
 - Attention Layers.
 - → Quantized
- Elementwise:
 - Batch Normalization
 - Activation Functions
 - Quantization Scaling.
 - → NOT Quantized

SOTA Cost metrics like ACE* only accounts for multiply-accumulate operations!

^{*} Zhang, Yichi, Zhiru Zhang, and Lukasz Lew. "Pokebnn: A binary pursuit of lightweight accuracy." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2022.

Our ACEv2 accounts for Overlooked Costs in existing cost metrics

- ACEv2 provides a simple <u>formula</u>
 for arithmetic operations as <u>addition</u>, <u>multiplication</u>,
 <u>multiply-accumulate</u>, and <u>shift</u>.
- ACEv2 has a <u>correlation</u>
 coefficient of <u>0.991</u> with the independently measured <u>energy</u> consumption.

	MULTIPLY		ADD		SHIFT	
	$\begin{bmatrix} \textbf{Energy} \\ (pJ) \end{bmatrix}$	ACE_{v2}	$\begin{array}{c} \textbf{Energy} \\ (pJ) \end{array}$	ACE_{v2}	$\begin{array}{c} \textbf{Energy} \\ (pJ) \end{array}$	ACE_{v2}
FP32 FP16	3.7	992 240	0.9 0.4	192 96	-	- -
f(i,j)	$\mid i \cdot j$ - n	nax(i,j)	$c_a \cdot m$	ax(i,j)		-
INT32 INT16 INT8 INT4 INT2 Binary	3.1 - 0.2 - -	992 240 56 12 2	0.1 - 0.03 - -	32 16 8 4 2 1	0.13 0.057 0.024 - -	32 12.8 4.8 1.6 0.4
$f(i,j) \ i \cdot j$ - $max(i,j)$			max(i,j)		$i \cdot log_2(j)/c_s$	

Introducing our Low-Precision model PikeLPN

- 1. Start with Compact Architecture
- 2. Quantize All Layers
 - ✓ Batch Norm Quantization
 - Distribution HeterogeneousQuantization
 - ✓ Double Quantization

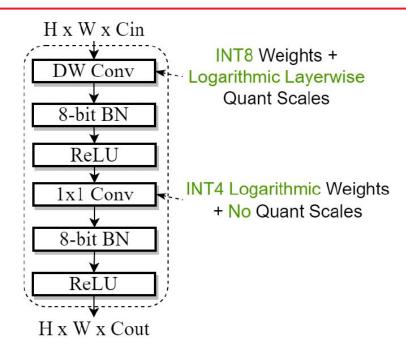


Figure: PikeLPN Building Block

PikeLPN outperforms 1 bit state-of-the-art Neural Networks

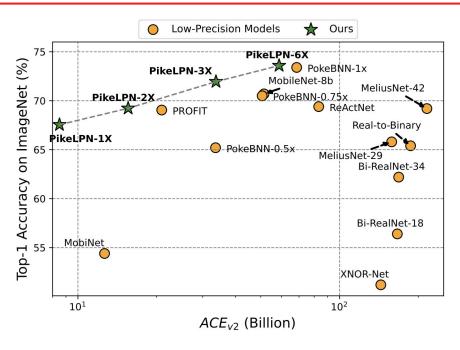


Figure: Top-1 Accuracy on ImageNet versus our ACEv2 cost of PikeLPN compared to SOTA low-precision models

Summary of Contributions

- ✓ Analysis of overlooked elementwise operations costs in SOTA models and cost metrics.
- Our hardware-agnostic cost metric, ACEv2, has 0.991 correlation with energy consumption.
- ✓ PikeLPN family of low-precision models with up to 3.5X energy improvements.

Thank You