Scalable 3D Registration via Truncated Entry-wise Absolute Residuals

Tianyu Huang¹*, Liangzu Peng²*, René Vidal², Yun-hui Liu¹

¹The Chinese University of Hong Kong, ²University of Pennsylvania

Background: Outlier-robust 3D Registration

Outlier-contaminated Correspondences

Existing Problem: Scalability & Efficiency

Method	Robustness	Efficiency	Scalability
Alternating Minimization	×	\checkmark	\checkmark
RANSAC (Few Iterations)	×	\checkmark	\checkmark
RANSAC (Huge Iterations)	\checkmark	×	\checkmark
Semidefinite Programs	\checkmark	×	×
Consistency Graph-based	\checkmark	$\sqrt{/\times}$	×
Outlier Removal	\checkmark	×	\checkmark
Deep Learning-based	$\sqrt{/\times}$	×	×

Our Contribution: Truncated Entry-wise Absolute Residuals

Classical Robust Losses

$$\max_{\substack{(\mathbf{R}, t) \in \text{SE}(3) \\ (\mathbf{R}, t) \in \text{SE}(3)}} \sum_{i=1}^{N} \mathbf{1} \left(\| y_i - \mathbf{R} x_i - t \|_2 \le \xi_i \right),$$
(CM)
$$\min_{\substack{(\mathbf{R}, t) \in \text{SE}(3) \\ i=1}} \sum_{i=1}^{N} \min \left\{ \| y_i - \mathbf{R} x_i - t \|_2^2, \ \xi_i^2 \right\}.$$
(TLS)

Our Truncated Entry-wise Absolute Residuals

$$\min_{(\boldsymbol{R},\boldsymbol{t})\in \mathrm{SE}(3)} \sum_{i=1}^{N} \min\left\{ \|\boldsymbol{y}_{i} - \boldsymbol{R}\boldsymbol{x}_{i} - \boldsymbol{t}\|_{1}, \, \xi_{i} \right\}. \quad (\mathrm{TEAR})$$

Our Contribution: DoF Decomposition of TEAR

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{c} \displaystyle \underset{(\mathbf{R},\mathbf{t})\in\mathrm{SE}(3)}{\min}\sum_{i=1}^{N}\min\{\|\mathbf{y}_{i}-\mathbf{R}\mathbf{x}_{i}-\mathbf{t}\|_{1},\ \xi_{i}\}. \end{array} (\text{TEAR}) \\ \\ \left\{ \begin{array}{c} \displaystyle \underset{\mathbf{r}_{1}\in\mathbb{S}^{2},t_{1}\in\mathbb{R}}{\min}\sum_{i=1}^{N}\min\{|y_{i1}-\mathbf{r}_{1}^{\top}\mathbf{x}_{i}-t_{1}|,\ \xi_{i1}\}. \end{array} (\text{TEAR-1}) \\ \\ \displaystyle \underset{\mathbf{r}_{2}\in\mathbb{S}^{2},t_{2}\in\mathbb{R}}{\min}\sum_{i\in\hat{\mathcal{I}}_{1}}\min\{|y_{i2}-\mathbf{r}_{2}^{\top}\mathbf{x}_{i}-t_{2}|,\ \xi_{i2}\} \\ \\ & \text{s.t.} \quad \mathbf{r}_{2}^{\top}\hat{\mathbf{r}}_{1}=0 \end{array} \right. \end{array}$$

Our Contribution: Tight Bounding Functions

Bounds of (TEAR-1) in a given branch of \mathbf{r}_1 :

(*Upper Bound*) We choose the center \dot{r}_1 and let $a_i := y_{i1} - \dot{r}_1^\top x_i$, then an upper bound can be computed as

$$\overline{U} = \min_{t_1 \in \mathbb{R}} \sum_{i=1}^{N} \min\{|a_i - t_1|, \xi_{i1}\}$$

$$= \min_{t_1 \in \mathbb{R}} U(t_1),$$

$$U(t_1)$$

(*Lower Bound*) Let $b_i := y_{i1} - r_1^{\top} x_i$ and we can compute $b_i \in [b_{il}, b_{iu}]$, then an lower bound can be computed as

$$\underline{L} = \min_{t_1 \in \mathbb{R}, \ b_i \in [b_{il}, b_{iu}]} \sum_{i=1}^{N} \min\{|b_i - t_1|, \ \xi_{i1}\}$$

$$= \min_{t_1 \in \mathbb{R}, \ b_i \in [b_{il}, b_{iu}]} \sum_{i=1}^{N} L(t_1, b_i, i),$$

$$L(t_1, t_1)$$

Experiments: TEAR Versus CM and TLS

Evaluation Experiments on Scalability and Efficiency

Point Cloud Name	Armadillo	Happy Buddha	Asian Dragon	Thai Statue	Lucy
# of Input Point Pairs (Outlier Ratio)	$10^5 (99\%)$	$5\times10^5~(99.2\%)$	$10^6 (99.4\%)$	$4\times 10^6~(99.6\%)$	$10^7 (99.8\%)$
Consistency Graph-based	out-of-memory				
Deep Learning-based	out-of-memory				
RANSAC	53.1 23.1 95.9	30.7 15.8 582	36.5 22.7 1179	37.1 24.6 6125	\geq 8 hours
FGR	57.1 39.1 2.48	84.1 23.7 19.3	62.1 19.7 39.8	79.7 15.2 175	88.9 11.5 449
GORE	0.67 0.52 6592	\geq 12 hours			
TR-DE	36.5 16.9 4658	\geq 9 hours			
TEAR	0.51 0.25 12.7	0.23 0.13 119	0.14 0.12 356	0.11 0.08 1013	0.07 0.06 1972

Evaluation Experiments on Real-world Datasets

Table 1. Results on 3DMatch (3DSmoothNet descriptors).					
Method	RR (%)↑	F1(%)↑	RE(°)↓	TE(cm)↓	Time(s)↓
RANSAC [21]	92.30	87.95	2.59	7.91	2.52
TEASER++ [68]	92.05	87.42	2.23	6.62	3.77
SC ² -PCR [14]	94.45	89.23	2.19	6.40	4.56
MAC (Python) [76]	out-of-memory				
MAC (C++) [76]	94.57	<u>89.48</u>	2.21	<u>6.52</u>	6.89
PointDSC [3]	93.65	89.07	2.17	6.75	5.28
VBReg [28]	37.09	18.07	6.15	15.65	8.07
TR-DE [13]	91.37	86.99	2.71	7.62	12.76
TEAR (Ours)	<u>94.52</u>	89.65	2.06	6.55	1.26

Table 2. Results on the KITTI dataset (FPFH descriptors).

Method	RR (%)↑	F1(%)↑	RE(°)↓	TE(cm)↓	Time(s)↓
RANSAC [21]	95.68	81.23	1.06	23.19	3.79
TEASER++ [68]	97.84	93.73	<u>0.43</u>	8.67	0.36
SC ² -PCR [14]	99.64	94.26	0.39	8.29	4.33
MAC (Python) [76]	94.95	89.52	0.52	10.26	4.53
MAC (C++) [76]	out-of-memory				
PointDSC [3]	98.20	92.71	0.57	8.67	6.20
VBReg [28]	98.92	92.69	0.45	<u>8.41</u>	8.20
TR-DE [13]	96.76	87.20	0.90	15.63	8.66
TEAR (Ours)	<u>99.10</u>	<u>93.85</u>	0.39	8.62	0.25

Table 3. Results on the ETH dataset (ISS + FPFH descriptors).					
Method	RR(%) ↑	F1(%)↑	RE(°)↓	TE(cm)↓	Time(s)↓
RANSAC [21]	69.05	65.17	0.44	10.31	6.12
TEASER++ [68]	96.43	<u>92.23</u>	<u>0.29</u>	5.84	0.85
SC ² -PCR [14]	<u>91.67</u>	90.34	0.32	6.25	12.93
MAC (both) [76]	out-of-memory				
PointDSC [3]	out-of-memory				
VBReg [28]	out-of-memory				
TR-DE [13]	88.09	73.40	0.62	16.49	7.57
TEAR (Ours)	96.43	93.14	0.25	5.71	0.38

Conclusion

- We formulate the outlier-robust 3D registration problem using the robust loss that we call TEAR, a shorthand for Truncated Entry-wise Absolute Residuals.
- We decompose TEAR into two subproblems of dimensions 3 and 2, respectively, which facilitates developing branch-and-bound implementations for globally optimal solutions.
- ➤ We derive upper and lower bounds that can be computed via solving a specific 1-dimensional problem in O(NlogN) time, where N is the total number of point pairs.
- Experiments demonstrate that our method can handle more than ten million point pairs with 99.8% random outliers, a setting in which no existing methods have been shown to succeed.