Oral
Alchemist: Parametric Control of Material Properties with Diffusion Models
Prafull Sharma · Varun Jampani · Yuanzhen Li · Xuhui Jia · Dmitry Lagun · Fredo Durand · William Freeman · Mark Matthews
Summit Flex Hall AB Oral #1
Abstract:
We propose a method to control material attributes of objects like roughness, metallic, albedo, and transparency in real images. Our method capitalizes on the generative prior of text-to-image models known for photorealism, employing a scalar value and instructions to alter low-level material properties. Addressing the lack of datasets with controlled material attributes, we generated an object-centric synthetic dataset with physically-based materials. Fine-tuning a modified pre-trained text-to-image model on this synthetic dataset enables us to edit material properties in real-world images while preserving all other attributes. We show the potential application of our model to material edited NeRFs.
Chat is not available.
Successful Page Load