Skip to yearly menu bar Skip to main content


Poster

From Correspondences to Pose: Non-minimal Certifiably Optimal Relative Pose without Disambiguation

Javier Tirado-GarĂ­n · Javier Civera

Arch 4A-E Poster #23
Highlight Highlight
[ ] [ Project Page ] [ Paper PDF ]
[ Poster
Wed 19 Jun 10:30 a.m. PDT — noon PDT

Abstract: Estimating the relative camera pose from $n \geq 5$ correspondences between two calibrated views is a fundamental task in computer vision. This process typically involves two stages: 1) estimating the essential matrix between the views, and 2) disambiguating among the four candidate relative poses that satisfy the epipolar geometry. In this paper, we demonstrate a novel approach that, for the first time, bypasses the second stage. Specifically, we show that it is possible to directly estimate the correct relative camera pose from correspondences without needing a post-processing step to enforce the cheirality constraint on the correspondences.Building on recent advances in certifiable non-minimal optimization, we frame the relative pose estimation as a Quadratically Constrained Quadratic Program (QCQP). By applying the appropriate constraints, we ensure the estimation of a camera pose that corresponds to a valid 3D geometry and that is globally optimal when certified. We validate our method through exhaustive synthetic and real-world experiments, confirming the efficacy, efficiency and accuracy of the proposed approach. Our code can be found in the supp. material and will be released.

Chat is not available.