Skip to yearly menu bar Skip to main content


Poster

Event Stream-based Visual Object Tracking: A High-Resolution Benchmark Dataset and A Novel Baseline

Xiao Wang · Shiao Wang · Chuanming Tang · Lin Zhu · Bo Jiang · Yonghong Tian · Jin Tang

Arch 4A-E Poster #448
[ ] [ Paper PDF ]
[ Poster
Thu 20 Jun 5 p.m. PDT — 6:30 p.m. PDT

Abstract: Tracking with bio-inspired event cameras has garnered increasing interest in recent years. Existing works either utilize aligned RGB and event data for accurate tracking or directly learn an event-based tracker. The former incurs higher inference costs while the latter may be susceptible to the impact of noisy events or sparse spatial resolution. In this paper, we propose a novel hierarchical knowledge distillation framework that can fully utilize multi-modal / multi-view information during training to facilitate knowledge transfer, enabling us to achieve high-speed and low-latency visual tracking during testing by using only event signals. Specifically, a teacher Transformer-based multi-modal tracking framework is first trained by feeding the RGB frame and event stream simultaneously. Then, we design a new hierarchical knowledge distillation strategy which includes pairwise similarity, feature representation, and response maps-based knowledge distillation to guide the learning of the student Transformer network. In particular, since existing event-based tracking datasets are all low-resolution ($346 \times 260$), we propose the first large-scale high-resolution ($1280 \times 720$) dataset named EventVOT. It contains 1141 videos and covers a wide range of categories such as pedestrians, vehicles, UAVs, ping pong, etc. Extensive experiments on both low-resolution (FE240hz, VisEvent, COESOT), and our newly proposed high-resolution EventVOT dataset fully validated the effectiveness of our proposed method. The dataset, evaluation toolkit, and source code will be released.

Chat is not available.