Skip to yearly menu bar Skip to main content


Poster

Generating Human Motion in 3D Scenes from Text Descriptions

Zhi Cen · Huaijin Pi · Sida Peng · Zehong Shen · Minghui Yang · Shuai Zhu · Hujun Bao · Xiaowei Zhou

Arch 4A-E Poster #163
[ ] [ Project Page ] [ Paper PDF ]
[ Poster
Wed 19 Jun 10:30 a.m. PDT — noon PDT

Abstract:

Generating human motions from textual descriptions has gained growing research interest due to its wide range of applications. However, only a few works consider human-scene interactions together with text conditions, which is crucial for visual and physical realism. This paper focuses on the task of generating human motions in 3D indoor scenes given text descriptions of the human-scene interactions. This task presents challenges due to the multimodality nature of text, scene, and motion, as well as the need for spatial reasoning. To address these challenges, we propose a new approach that decomposes the complex problem into two more manageable sub-problems: (1) language grounding of the target object and (2) object-centric motion generation. For language grounding of the target object, we leverage the power of large language models. For motion generation, we design an object-centric scene representation for the generative model to focus on the target object, thereby reducing the scene complexity and facilitating the modeling of the relationship between human motions and the object. Experiments demonstrate the better motion quality of our approach compared to baselines and validate our design choices. Code will be available at https://zju3dv.github.io/textscenemotion.

Chat is not available.