Skip to yearly menu bar Skip to main content


Poster

One-dimensional Adapter to Rule Them All: Concepts Diffusion Models and Erasing Applications

Mengyao Lyu · Yuhong Yang · Haiwen Hong · Hui Chen · Xuan Jin · Yuan He · Hui Xue · Jungong Han · Guiguang Ding

Arch 4A-E Poster #268
Highlight Highlight
[ ] [ Project Page ]
[ Poster
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT

Abstract: The prevalent use of commercial and open-source diffusion models (DMs) for text-to-image generation prompts the risk mitigation to prevent undesired behaviors. Existing concept erasing methods in academia are all based on full parameter or specification-based fine-tuning, from which we observe following issues: 1) Generation alternation towards erosion: Parameter drift during target elimination causes alternations and potential deformations across all generations, even eroding other concepts at varying degrees, which is more evident with multi-concept erasing; 2) Transfer inability \& deployment inefficiency: Previous model-specific erasure impedes the flexible combination of concepts and the training-free transfer towards other models, resulting in linear cost growth as the deployment scenarios increase.To achieve non-invasive, precise, customizable and transferable elimination, we ground our erasing framework on one-dimensional adapters to erase multiple concepts from most of DMs at once across versatile erasing applications. The concept-SemiPermeable structure is injected as a Membrane (SPM) into any DM to learn targeted erasing, and meantime the alteration and erosion phenomenon is effectively minimized via a novel Latent Anchoring fine-tuning strategy. Once obtained, SPMs can be flexibly combined and plug-and-play for other DMs without specific re-tuning, enabling timely and efficient adaptation to diverse scenarios. During generation, our Facilitated Transport mechanism dynamically regulates the permeability of each SPM to respond to different input prompts, further minimizing the impact on other concepts. Quantitative and qualitative results across $\sim$40 concepts, 7 DMs and 4 erasing applications have demonstrated the superior erasing of SPM. Our code and pre-tuned SPMs will be available on the project https://***.

Chat is not available.