Skip to yearly menu bar Skip to main content


Poster

Splatter Image: Ultra-Fast Single-View 3D Reconstruction

Stanislaw Szymanowicz · Christian Rupprecht · Andrea Vedaldi

Arch 4A-E Poster #52
[ ] [ Paper PDF ]
Thu 20 Jun 10:30 a.m. PDT — noon PDT

Abstract:

We introduce the Splatter Image, an ultra-efficient approach for monocular 3D object reconstruction.Splatter Image is based on Gaussian Splatting, which allows fast and high-quality reconstruction of 3D scenes from multiple images.We apply Gaussian Splatting to monocular reconstruction by learning a neural network that, at test time, performs reconstruction in a feed-forward manner, at 38 FPS.Our main innovation is the surprisingly straightforward design of this network, which, using 2D operators, maps the input image to one 3D Gaussian per pixel.The resulting set of Gaussians thus has the form an image, the Splatter Image.We further extend the method take several images as input via cross-view attention.Owning to the speed of the renderer (588 FPS), we use a single GPU for training while generating entire images at each iteration to optimize perceptual metrics like LPIPS.On several synthetic, real, multi-category and large-scale benchmark datasets, we achieve better results in terms of PSNR, LPIPS, and other metrics while training and evaluating much faster than prior works.Code, models and more results are available at https://szymanowiczs.github.io/splatter-image.

Chat is not available.