Poster
Neural Texture Synthesis With Guided Correspondence
Yang Zhou · Kaijian Chen · Rongjun Xiao · Hui Huang
West Building Exhibit Halls ABC 154
Markov random fields (MRFs) are the cornerstone of classical approaches to example-based texture synthesis. Yet, it is not fully valued in the deep learning era. This paper aims to re-promote the combination of MRFs and neural networks, i.e., the CNNMRF model, for texture synthesis, with two key observations made. We first propose to compute the Guided Correspondence Distance in the nearest neighbor search, based on which a Guided Correspondence loss is defined to measure the similarity of the output texture to the example. Experiments show that our approach surpasses existing neural approaches in uncontrolled and controlled texture synthesis. More importantly, the Guided Correspondence loss can function as a general textural loss in, e.g., training generative networks for real-time controlled synthesis and inversion-based single-image editing. In contrast, existing textural losses, such as the Sliced Wasserstein loss, cannot work on these challenging tasks.