Skip to yearly menu bar Skip to main content


Poster

DeepMapping2: Self-Supervised Large-Scale LiDAR Map Optimization

Chao Chen · Xinhao Liu · Yiming Li · Li Ding · Chen Feng

West Building Exhibit Halls ABC 103

Abstract:

LiDAR mapping is important yet challenging in self-driving and mobile robotics. To tackle such a global point cloud registration problem, DeepMapping converts the complex map estimation into a self-supervised training of simple deep networks. Despite its broad convergence range on small datasets, DeepMapping still cannot produce satisfactory results on large-scale datasets with thousands of frames. This is due to the lack of loop closures and exact cross-frame point correspondences, and the slow convergence of its global localization network. We propose DeepMapping2 by adding two novel techniques to address these issues: (1) organization of training batch based on map topology from loop closing, and (2) self-supervised local-to-global point consistency loss leveraging pairwise registration. Our experiments and ablation studies on public datasets such as KITTI, NCLT, and Nebula, demonstrate the effectiveness of our method.

Chat is not available.