Skip to yearly menu bar Skip to main content


Poster

Learning To Exploit Temporal Structure for Biomedical Vision–Language Processing

Shruthi Bannur · Stephanie Hyland · Qianchu Liu · Fernando Pérez-García · Maximilian Ilse · Daniel C. Castro · Benedikt Boecking · Harshita Sharma · Kenza Bouzid · Anja Thieme · Anton Schwaighofer · Maria Wetscherek · Matthew P. Lungren · Aditya Nori · Javier Alvarez-Valle · Ozan Oktay

West Building Exhibit Halls ABC 254

Abstract:

Self-supervised learning in vision--language processing (VLP) exploits semantic alignment between imaging and text modalities. Prior work in biomedical VLP has mostly relied on the alignment of single image and report pairs even though clinical notes commonly refer to prior images. This does not only introduce poor alignment between the modalities but also a missed opportunity to exploit rich self-supervision through existing temporal content in the data. In this work, we explicitly account for prior images and reports when available during both training and fine-tuning. Our approach, named BioViL-T, uses a CNN--Transformer hybrid multi-image encoder trained jointly with a text model. It is designed to be versatile to arising challenges such as pose variations and missing input images across time. The resulting model excels on downstream tasks both in single- and multi-image setups, achieving state-of-the-art (SOTA) performance on (I) progression classification, (II) phrase grounding, and (III) report generation, whilst offering consistent improvements on disease classification and sentence-similarity tasks. We release a novel multi-modal temporal benchmark dataset, CXR-T, to quantify the quality of vision--language representations in terms of temporal semantics. Our experimental results show the significant advantages of incorporating prior images and reports to make most use of the data.

Chat is not available.