Skip to yearly menu bar Skip to main content


Poster

Nerflets: Local Radiance Fields for Efficient Structure-Aware 3D Scene Representation From 2D Supervision

Xiaoshuai Zhang · Abhijit Kundu · Thomas Funkhouser · Leonidas Guibas · Hao Su · Kyle Genova

West Building Exhibit Halls ABC 005

Abstract:

We address efficient and structure-aware 3D scene representation from images. Nerflets are our key contribution-- a set of local neural radiance fields that together represent a scene. Each nerflet maintains its own spatial position, orientation, and extent, within which it contributes to panoptic, density, and radiance reconstructions. By leveraging only photometric and inferred panoptic image supervision, we can directly and jointly optimize the parameters of a set of nerflets so as to form a decomposed representation of the scene, where each object instance is represented by a group of nerflets. During experiments with indoor and outdoor environments, we find that nerflets: (1) fit and approximate the scene more efficiently than traditional global NeRFs, (2) allow the extraction of panoptic and photometric renderings from arbitrary views, and (3) enable tasks rare for NeRFs, such as 3D panoptic segmentation and interactive editing.

Chat is not available.