Poster
The ObjectFolder Benchmark: Multisensory Learning With Neural and Real Objects
Ruohan Gao · Yiming Dou · Hao Li · Tanmay Agarwal · Jeannette Bohg · Yunzhu Li · Li Fei-Fei · Jiajun Wu
West Building Exhibit Halls ABC 076
We introduce the ObjectFolder Benchmark, a benchmark suite of 10 tasks for multisensory object-centric learning, centered around object recognition, reconstruction, and manipulation with sight, sound, and touch. We also introduce the ObjectFolder Real dataset, including the multisensory measurements for 100 real-world household objects, building upon a newly designed pipeline for collecting the 3D meshes, videos, impact sounds, and tactile readings of real-world objects. For each task in the ObjectFolder Benchmark, we conduct systematic benchmarking on both the 1,000 multisensory neural objects from ObjectFolder, and the real multisensory data from ObjectFolder Real. Our results demonstrate the importance of multisensory perception and reveal the respective roles of vision, audio, and touch for different object-centric learning tasks. By publicly releasing our dataset and benchmark suite, we hope to catalyze and enable new research in multisensory object-centric learning in computer vision, robotics, and beyond. Project page: https://objectfolder.stanford.edu