Skip to yearly menu bar Skip to main content


Poster

Neural Kaleidoscopic Space Sculpting

Byeongjoo Ahn · Michael De Zeeuw · Ioannis Gkioulekas · Aswin C. Sankaranarayanan

West Building Exhibit Halls ABC 021

Abstract:

We introduce a method that recovers full-surround 3D reconstructions from a single kaleidoscopic image using a neural surface representation. Full-surround 3D reconstruction is critical for many applications, such as augmented and virtual reality. A kaleidoscope, which uses a single camera and multiple mirrors, is a convenient way of achieving full-surround coverage, as it redistributes light directions and thus captures multiple viewpoints in a single image. This enables single-shot and dynamic full-surround 3D reconstruction. However, using a kaleidoscopic image for multi-view stereo is challenging, as we need to decompose the image into multi-view images by identifying which pixel corresponds to which virtual camera, a process we call labeling. To address this challenge, pur approach avoids the need to explicitly estimate labels, but instead “sculpts” a neural surface representation through the careful use of silhouette, background, foreground, and texture information present in the kaleidoscopic image. We demonstrate the advantages of our method in a range of simulated and real experiments, on both static and dynamic scenes.

Chat is not available.