Poster
Improving Single Domain-Generalized Object Detection: A Focus on Diversification and Alignment
Muhammad Sohail Danish · Muhammad Haris Khan · Muhammad Akhtar Munir · M. Sarfraz · Mohsen Ali
Arch 4A-E Poster #303
In this work, we tackle the problem of domain generalization for object detection, specifically focusing on the scenario where only a single source domain is available. We propose an effective approach that involves two key steps: diversifying the source domain and aligning detections based on class prediction confidence and localization.Firstly, we demonstrate that by carefully selecting a set of augmentations, a base detector can outperform existing methods for single domain generalization by a good margin. This highlights the importance of domain diversification in improving the performance of object detectors.Secondly, we introduce a method to align detections from multiple views, considering both classification and localization outputs. This alignment procedure leads to better generalized and well-calibrated object detector models, which are crucial for accurate decision-making in safety-critical applications.Our approach is detector-agnostic and can be seamlessly applied to both single-stage and two-stage detectors.To validate the effectiveness of our proposed methods, we conduct extensive experiments and ablations on challenging domain-shift scenarios. The results consistently demonstrate the superiority of our approach compared to existing methods.We will publicly release our code and models to facilitate further research in this area.