Generative models show good potential for recovering 3D faces beyond limited shape assumptions. While plausible details and resolutions are achieved, these models easily fail under extreme conditions of pose, shadow or appearance, due to the entangled fitting or lack of multi-view priors. To address this problem, this paper presents a novel Neural Proto-face Field (NPF) for unsupervised robust 3D face modeling. Instead of using constrained images as Neural Radiance Field (NeRF), NPF disentangles the common/specific facial cues, i.e., ID, expression and scene-specific details from in-the-wild photo collections. Specifically, NPF learns a face prototype to aggregate 3D-consistent identity via uncertainty modeling, extracting multi-image priors from a photo collection. NPF then learns to deform the prototype with the appropriate facial expressions, constrained by a loss of expression consistency and personal idiosyncrasies. Finally, NPF is optimized to fit a target image in the collection, recovering specific details of appearance and geometry. In this way, the generative model benefits from multi-image priors and meaningful facial structures. Extensive experiments on benchmarks show that NPF recovers superior or competitive facial shapes and textures, compared to state-of-the-art methods.